Dynamics of thin precursor film in wetting of nanopatterned surfaces

2021 ◽  
Vol 118 (38) ◽  
pp. e2108074118
Author(s):  
Utkarsh Anand ◽  
Tanmay Ghosh ◽  
Zainul Aabdin ◽  
Siddardha Koneti ◽  
XiuMei Xu ◽  
...  

The spreading of a liquid droplet on flat surfaces is a well-understood phenomenon, but little is known about how liquids spread on a rough surface. When the surface roughness is of the nanoscopic length scale, the capillary forces dominate and the liquid droplet spreads by wetting the nanoscale textures that act as capillaries. Here, using a combination of advanced nanofabrication and liquid-phase transmission electron microscopy, we image the wetting of a surface patterned with a dense array of nanopillars of varying heights. Our real-time, high-speed observations reveal that water wets the surface in two stages: 1) an ultrathin precursor water film forms on the surface, and then 2) the capillary action by nanopillars pulls the water, increasing the overall thickness of water film. These direct nanoscale observations capture the previously elusive precursor film, which is a critical intermediate step in wetting of rough surfaces.

Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
M. Gajdardziska-Josifovska ◽  
B. G. Frost ◽  
E. Völkl ◽  
L. F. Allard

Polar surfaces are those crystallographic faces of ionically bonded solids which, when bulk terminated, have excess surface charge and a non-zero dipole moment perpendicular to the surface. In the case of crystals with a rock salt structure, {111} faces are the exemplary polar surfaces. It is commonly believed that such polar surfaces facet into neutral crystallographic planes to minimize their surface energy. This assumption is based on the seminal work of Henrich which has shown faceting of the MgO(111) surface into {100} planes giving rise to three sided pyramids that have been observed by scanning electron microscopy. These surfaces had been prepared by mechanical polishing and phosphoric acid etching, followed by Ar+ sputtering and 1400 K annealing in ultra-high vacuum (UHV). More recent reflection electron microscopy studies of MgO(111) surfaces, annealed in the presence of oxygen at higher temperatures, have revealed relatively flat surfaces stabilized by an oxygen rich reconstruction. In this work we employ a combination of optical microscopy, transmission electron microscopy, and electron holography to further study the issue of surface faceting.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Hirotoshi Sasaki ◽  
Yuka Iga

This study explains why the deep erosion pits are formed in liquid droplet impingement erosion even though the droplets uniformly impinge on the entire material surface. Liquid droplet impingement erosion occurs in fluid machinery on which droplets impinge at high speed. In the process of erosion, the material surface becomes completely roughened by erosion pits. In addition, most material surface is not completely smooth and has some degree of initial roughness from manufacturing and processing and so on. In this study, to consider the influence of the roughness on the material surface under droplet impingement, a numerical analysis of droplets impinging on the material surface with a single wedge and a single bump was conducted with changing offsets between the droplet impingement centers and the roughness centers on each a wedge bottom and a bump top. As results, two mechanisms are predicted from the present numerical results: the erosion rate accelerates and transitions from the incubation stage to the acceleration stage once roughness occurs on the material surface; the other is that deep erosion pits are formed even in the case of liquid droplets impinging uniformly on the entire material surface.


1999 ◽  
Vol 564 ◽  
Author(s):  
P. W. DeHaven ◽  
K. P. Rodbell ◽  
L. Gignac

AbstractThe effectiveness of a TiN capping layer to prevent the conversion of α-titantium to titanium nitride when annealed in a nitrogen ambient has been studied over the temperature range 300–700°C using in-situ high temperature diffraction and transmission electron microscopy. Over the time range of interest (four hours), no evidence of Ti reaction was observed at 300°C. At 450°C. nitrogen was found to diffuse into the Ti to form a Ti(N) solid solution. Above 500°C the titanium is transformed to a second phase: however this reaction follows two different kinetic paths, depending on the annealing temperature. Below 600°C. the reaction proceeds in two stages, with the first stage consisting of Ti(N) formation, and the second stage consisting of the conversion of the Ti(N) with a transformation mechanism characteristic of short range diffusion (grain edge nucleation). Above 600°C, a simple linear transformation rate is observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongmei Mo ◽  
Xiangying Li ◽  
Yong Chen ◽  
Yang Jiang ◽  
Chunfang Gan ◽  
...  

AbstractNanopesticide is one of the best pesticide formulation technologies to overcome the disadvantages of traditional pesticides, which has received great attention from the international community. Using high-speed emulsification and ultrasonic dispersion technology, an avermectin nano-delivery system (Av-NDs) with a particle size of 80–150 nm was prepared through embedding the pesticide molecule utilizing the cross-linking reaction between sodium lignosulfonate and p-phenylenediamine diazonium salt. The formulation and composition of Av-NDs were optimized, the morphology of Av-NDs was analyzed by scanning electron microscope, transmission electron microscope and dynamic light scattering, and the structure of Av-NDs was characterized by UV, IR and 1H NMR. Anti-photolysis and controlled-release tests show that the stability of Av-NDs is 3–4 times of the original avermectin (Av) and possesses the pH-responsive controlled release property. Furthermore, the insecticidal activity of Av-NDs is better than that of avermectin suspension concentrate (Av-SC). The Av-NDs with anti-photolysis and controlled-release characteristics is suitable for large-scale industrial production and is capable to be utilized as effective insecticide in the field.


1976 ◽  
Vol 98 (4) ◽  
pp. 1125-1134 ◽  
Author(s):  
R. Komanduri ◽  
M. C. Shaw

Attritious wear of silicon carbide in simulated grinding tests against a cobalt base superalloy at high speed and extremely small feed rate was studied using a scanning electron microscope (SEM) and an auger electron spectroscope (AES). In many cases the wear area of silicon carbide was found to be concave rather than planar in shape. Several microcracks and grain boundary fracture were also observed. No evidence of metal build-up was observed on silicon carbide which was not the case with aluminum oxide. AES study of the rubbed surface on the work material and transmission electron microscope (TEM) investigation of the wear debris suggest that attritious wear of silicon carbide is due to one or more of the following mechanisms: 1 – Preferential removal of surface atoms on the abrasive, layer by layer, by oxidation under high temperature and a favorably directed shear stress; 2 – disassociation of silicon carbide at high temperature and (a) diffusion of silicon into the work material and formation of metal silicides and (b) diffusion of carbon into the work material and formation of unstable metal carbides (in the present case Ni3C and Co3C) which decompose during cooling to metal and carbon atoms; 3 – pinocoidal cleavage fracture of silicon carbide on basal planes c(0001) resulting in the removal of many micron-sized crystallites.


Sign in / Sign up

Export Citation Format

Share Document