scholarly journals High-affinity binding of agonists to beta-adrenergic receptors on intact cells.

1983 ◽  
Vol 80 (12) ◽  
pp. 3553-3557 ◽  
Author(s):  
M. L. Toews ◽  
T. K. Harden ◽  
J. P. Perkins
FEBS Letters ◽  
1985 ◽  
Vol 187 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Kurt R. Schwarz ◽  
Stephen M. Lanier ◽  
Edward A. Carter ◽  
Robert M. Graham ◽  
Charles J. Homey

1989 ◽  
Vol 256 (3) ◽  
pp. E392-E400
Author(s):  
R. K. Studer ◽  
L. Ganas

The ontogeny of alpha 1- and beta-adrenergic receptors and their relative stimulation of phosphorylase alpha activity in hepatic tissue from male and female rats were compared. A decrease in beta-adrenergic receptor concentration and 4-(t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazol-2-one HCl affinity for these sites was found in males and females, when data from membranes of 20- to 22-day animals was compared with that from neonates. No subsequent decline in receptor concentration was noted in the female; however, the beta-mediated phosphorylase activation was further diminished by 49-56 days, suggesting maturational changes beyond the receptor-adenylate cyclase system. Although high-affinity beta-adrenergic receptors were documented in membranes from pubertal males, they were not identified on the intact cells, and activation of phosphorylase alpha via the beta-pathway was minimal. This suggests the majority of the beta-receptors are sequestered in cellular sites not accessible to the hydrophilic ligand or epinephrine in the sexually mature male. Ontogeny of the alpha 1-adrenergic receptors was similar in males and females. Gonadectomy of mature males and females did not eliminate the sexual differences in adrenergic response. However, the ovariectomized females developed an enhanced basal and alpha-adrenergic stimulated phosphorylase activity. The rise in cytosolic free calcium in response to epinephrine was increased in the ovariectomized females to values seen in the intact male, whereas the response in the castrate male was depressed. The results suggest the dimorphism in alpha 1- and beta-adrenergic receptor function is determined by factors other than the ambient concentration of sex steroids in the adult.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (2) ◽  
pp. C310-C314 ◽  
Author(s):  
J. M. Madison ◽  
C. B. Basbaum ◽  
J. K. Brown ◽  
W. E. Finkbeiner

We characterized the beta-adrenergic receptors that mediate secretory responses to isoproterenol in cultured bovine tracheal submucosal gland cells. Previous studies have shown that these cells have morphological and biochemical features characteristic of serous cells. Isoproterenol, epinephrine, and norepinephrine each stimulated the secretion of 35SO4-labeled macromolecules from these cultured serous cells with a rank order of potency (isoproterenol greater than epinephrine greater than norepinephrine) consistent with the presence of beta 2-adrenergic receptors. These functional studies were supported by radioligand-binding studies using [I125]-iodocyanopindolol (125I-CYP) to identify beta-adrenergic receptors. 125I-CYP binding to membrane particulates prepared from cultured serous cells was saturable and of high affinity (equilibrium dissociation constant 20 +/- 3 pM; mean +/- SE, n = 6) and was antagonized stereoselectively by propranolol. Adrenergic agonists competed for 125I-CYP-binding sites with a rank order of potency characteristic of the beta 2-adrenergic receptor subtype. A specific beta 2-adrenergic receptor antagonist, ICI 118.551, competed for a single class of 125I-CYP-binding sites with high affinity (inhibition constant 1.8 +/- 0.3 nM, n = 3). We concluded that the secretory response of cultured tracheal gland cells to isoproterenol is a response mediated by beta-adrenergic receptors of the beta 2 subtype.


1982 ◽  
Vol 37 (7-8) ◽  
pp. 620-631 ◽  
Author(s):  
Henrik Laasch ◽  
Klaus Pfister ◽  
Wolfgang Urbach

Abstract High- and low-affinity binding of photosystem II herbicides to isolated thylakoids of Spinacia oleracea and to intact cells of the unicellular green alga Ankistrodesmus braunii were investigated. Complete mutual displacement of bound diuron-type herbicides (e.g. diuron, atrazine, terbutryn) by either diuron- or phenol-type herbicides (e.g. ioxynil, dinoseb) in thylakoids as well as in intact algal cells was found for herbicide concentrations (< 4 nmol bound herbicide/mg Chl) which gave almost saturated high-affinity binding. This demonstrates a high degree of specific binding of these herbicides towards their receptor sites even in intact algal cells. In contrast, phenol-type herbicides are largely unspecifically bound in algal cells. The mechanism of binding of all photosystem II herbicides at the high-affinity (specific) binding site was found to be competitive. Within the group of diuron-type and of phenol-type herbicides as well as between these two groups, graphical and quantitative analysis of the Lineweaver- Burk plot and of the Dixon plot indicated competitive binding. From this a common binding site for both types of herbicides was concluded. The involvement of two different herbicide binding- proteins is discussed. Low-affinity (unspecific) binding was found to be irreversible in contrast to the easily reversible high-affinity binding. Irreversibility was indicated by a lack of displacement. It is proposed that low-affinity binding represents either a partitioning of the herbicides into the lipophilic parts of the membranes or an attachment to distinct receptor sites. Unspecifically bound herbicides might be responsible for several high concentration effects of the photosystem II herbicides, which are described in the literature. Evidences for the possible existence of a second binding site of these herbicides are presented.


Sign in / Sign up

Export Citation Format

Share Document