receptor activity
Recently Published Documents


TOTAL DOCUMENTS

2217
(FIVE YEARS 201)

H-INDEX

104
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Christian J.G. Tessier ◽  
R. Michel Sturgeon ◽  
Johnathon R. Emlaw ◽  
Gregory D. McCluskey ◽  
F. Javier Pérez-Areales ◽  
...  

Human adult muscle-type acetylcholine receptors are heteropentameric ion channels formed from two α-subunits, and one each of the β-, δ-, and ϵ- subunits. To form functional channels, the subunits must assemble with one another in a precise stoichiometry and arrangement. Despite being different, the four subunits share a common ancestor that is presumed to have formed homopentamers. The extent to which the properties of the modern-day receptor result from its subunit complexity is unknown. Here we show that a reconstructed ancestral muscle-type β-subunit can form homopentameric ion channels. These homopentamers open spontaneously and display single-channel hallmarks of muscle type acetylcholine receptor activity. Our findings demonstrate that signature features of muscle-type acetylcholine receptor function are independent of agonist, and do not necessitate the complex heteropentameric architecture of the modern-day receptor.


2022 ◽  
Vol 12 ◽  
Author(s):  
Suruchi Pacharne ◽  
Matthew Livesey ◽  
Mahita Kadmiel ◽  
Ning Wang ◽  
Kathleen M. Caron ◽  
...  

Knockout technologies provide insights into physiological roles of genes. Studies initiated into endocrinology of heteromeric G protein-coupled receptors included deletion of receptor activity modifying protein-3, an accessory protein that alters ligand selectivity of calcitonin and calcitonin-like receptors. Initially, deletion of Ramp3-/- appeared phenotypically silent, but it has emerged that mice have a high bone mass phenotype, and more subtle alterations to angiogenesis, amylin homeostasis, and a small proportion of the effects of adrenomedullin on cardiovascular and lymphatic systems. Here we explore in detail, effects of Ramp3-/- deletion on skeletal growth/development, bone mass and response of bone to mechanical loading mimicking exercise. Mouse pups lacking RAMP3 are healthy and viable, having accelerated development of the skeleton as assessed by degree of mineralisation of specific bones, and by microCT measurements. Specifically, we observed that neonates and young mice have increased bone volume and mineralisation in hindlimbs and vertebrae and increased thickness of bone trabeculae. These changes are associated with increased osteoblast numbers and bone apposition rate in Ramp3-/- mice, and increased cell proliferation in epiphyseal growth plates. Effects persist for some weeks after birth, but differences in gross bone mass between RAMP3 and WT mice lose significance in older animals although architectural differences persist. Responses of bones of 17-week old mice to mechanical loading that mimics effects of vigorous exercise is increased significantly in Ramp3-/- mice by 30% compared with WT control mice. Studies on cultured osteoblasts from Ramp3-/- mice indicate interactions between mRNA expression of RAMPs1 and 3, but not RAMP2 and 3. Our preliminary data shows that Ramp3-/- osteoblasts had increased expression β-catenin, a component of the canonical Wnt signalling pathway known to regulate skeletal homeostasis and mechanosensitivity. Given interactions of RAMPs with both calcitonin and calcitonin-like receptors to alter ligand selectivity, and with other GPCRs to change trafficking or ligand bias, it is not clear whether the bone phenotype of Ramp3-/- mice is due to alterations in signalling mediated by one or more GPCRS. However, as antagonists of RAMP-interacting receptors are growing in availability, there appears the likelihood that manipulation of the RAMP3 signalling system could provide anabolic effects therapeutically.


Author(s):  
Harold L. Haun ◽  
Christina L. Lebonville ◽  
Matthew G. Solomon ◽  
William C. Griffin ◽  
Marcelo F. Lopez ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1864
Author(s):  
Spencer R. Pierce ◽  
Allison L. Germann ◽  
Gustav Akk

The Cl− permeable GABAA receptor is a major contributor to cellular inhibition in the brain. The receptor is normally activated by synaptically-released or ambient GABA but is sensitive to a number of physiological compounds such as β-alanine, taurine, and neurosteroids that, to various degrees, activate the receptor and modulate responses either to the transmitter or to each other. Here, we describe α1β2γ2L GABAA receptor activation and modulation by combinations of orthosteric and allosteric activators. The overall goal was to gain insight into how changes in the levels of endogenous agonists modulate receptor activity and influence cellular inhibition. Experimental observations and simulations are described in the framework of a cyclic concerted transition model. We also provide general analytical solutions for the analysis of electrophysiological data collected in the presence of combinations of active compounds.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3495
Author(s):  
Ivan Vlasov ◽  
Alexandra Panteleeva ◽  
Tatiana Usenko ◽  
Mikhael Nikolaev ◽  
Artem Izumchenko ◽  
...  

To assess the biology of the lethal endpoint in patients with SARS-CoV-2 infection, we compared the transcriptional response to the virus in patients who survived or died during severe COVID-19. We applied gene expression profiling to generate transcriptional signatures for peripheral blood mononuclear cells (PBMCs) from patients with SARS-CoV-2 infection at the time when they were placed in the Intensive Care Unit of the Pavlov First State Medical University of St. Petersburg (Russia). Three different bioinformatics approaches to RNA-seq analysis identified a downregulation of three common pathways in survivors compared with nonsurvivors among patients with severe COVID-19, namely, low-density lipoprotein (LDL) particle receptor activity (GO:0005041), important for maintaining cholesterol homeostasis, leukocyte differentiation (GO:0002521), and cargo receptor activity (GO:0038024). Specifically, PBMCs from surviving patients were characterized by reduced expression of PPARG, CD36, STAB1, ITGAV, and ANXA2. Taken together, our findings suggest that LDL particle receptor pathway activity in patients with COVID-19 infection is associated with poor disease prognosis.


2021 ◽  
Vol 17 (S9) ◽  
Author(s):  
Maria P Guerrero Calvache ◽  
Samuel Obeng ◽  
Francisco Leon ◽  
Lea R Gamez‐Jimenez ◽  
Avi Patel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document