scholarly journals Regulation of Both Glycogen Synthase and PHAS-I by Insulin in Rat Skeletal Muscle Involves Mitogen-activated Protein Kinase-independent and Rapamycin-sensitive Pathways

1996 ◽  
Vol 271 (9) ◽  
pp. 5033-5039 ◽  
Author(s):  
Iñaki Azpiazu ◽  
Alan R. Saltiel ◽  
Anna A. DePaoli-Roach ◽  
John C. Jr. Lawrence
1996 ◽  
Vol 271 (2) ◽  
pp. E403-E408 ◽  
Author(s):  
L. J. Goodyear ◽  
P. Y. Chang ◽  
D. J. Sherwood ◽  
S. D. Dufresne ◽  
D. E. Moller

Studies in mammalian cells have established the existence of at least three distinct mitogen-activated protein kinase (MAP kinase) signaling pathways that are activated by a variety of growth factors and/or environmental stressors. We determined whether physical exercise, a physiological stressor, and insulin, a metabolic stimulator and growth factor, activate the c-jun NH2-terminus kinase (JNK), the p38 kinase, and/or the extracellular regulatory kinases (ERK; p42MAPK and p44MAPK) signaling pathways in rat skeletal muscle. Animals were studied immediately after running on a motorized treadmill for 10-60 min (20 m/min, 10% grade) or 5-30 min after an intraperitoneal injection of insulin (20 U/rat). Exercise increased skeletal muscle JNK activity by two- to threefold throughout the time course studied, whereas insulin did not significantly increase JNK activity. The p38 activity was slightly stimulated by exercise and not by insulin. The ERK kinase pathway, as assessed by ribosomal S6 kinase-2 activity assays and phosphospecific p42MAPK/p4NAPK immunoblotting, was stimulated by both exercise and insulin. These data are the first demonstration of exercise stimulating multiple intracellular signaling pathways in skeletal muscle. Activation of these MAP kinase signaling pathways may mediate changes in skeletal muscle growth and metabolism that occur in response to exercise.


2004 ◽  
Vol 63 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Yun Chau Long ◽  
Ulrika Widegren ◽  
Juleen R. Zierath

Exercise training improves glucose homeostasis through enhanced insulin sensitivity in skeletal muscle. Muscle contraction through physical exercise is a physiological stimulus that elicits multiple biochemical and biophysical responses and therefore requires an appropriate control network. Mitogen-activated protein kinase (MAPK) signalling pathways constitute a network of phosphorylation cascades that link cellular stress to changes in transcriptional activity. MAPK cascades are divided into four major subfamilies, including extracellular signal-regulated kinases 1 and 2, p38 MAPK, c-Jun NH2-terminal kinase and extracellular signal-regulated kinase 5. The present review will present the current understanding of parallel MAPK signalling in human skeletal muscle in response to exercise and muscle contraction, with an emphasis on identifying potential signalling mechanisms responsible for changes in gene expression.


Sign in / Sign up

Export Citation Format

Share Document