mapk signalling
Recently Published Documents


TOTAL DOCUMENTS

454
(FIVE YEARS 144)

H-INDEX

53
(FIVE YEARS 8)

2022 ◽  
Vol 146 ◽  
pp. 112545
Author(s):  
Tapan Behl ◽  
Tarapati Rana ◽  
Ghallab H. Alotaibi ◽  
Md. Shamsuzzaman ◽  
Maaz Naqvi ◽  
...  

2021 ◽  
Author(s):  
Yiming Xu ◽  
Song Xue ◽  
Tian Zhang ◽  
Xinmeng Jin ◽  
Cong Wang ◽  
...  

Abstract Background: Osteoarthritis (OA) is widely recognized as the most common chronic joint disease accompanied by progressive cartilage and subchondral bone damage. Toddalolactone (TOD), a natural compound extracted from Toddalia asiatica (L.) Lam., has been widely used in the treatment of stroke, rheumatoid arthritis, and oedema. Nevertheless, what TOD acts as in the pathogenesis and progression of OA hasn’t been reported. In this investigation, we have aimed to determine how TOD affects OA in vitro and in vivo.Methods: LPS (10μg/ml) was employed to induce chondrocyte inflammation or RANKL to induce osteoclast differentiation in bone marrow derived macrophages (BMMs); Meanwhile, the effects of TOD on chondrocyte inflammation and osteoclast differentiation were evaluated. Anterior cruciate ligament transection (ACLT) was performed to develop an OA animal model and study the effects of TOD.Results: We found that TOD inhibited the expression of inflammatory and catabolic mediators ( IL-6, IL-8, TNF-α, MMP2, MMP9, and MMP13) in LPS-treated chondrocytes in vitro. Furthermore, TOD was proven to inhibit RANKL-induced-osteoclastogenesis and inhibit the expression of marker genes (NFATc1 and c-fos). Our data also confirmed that TOD suppressed the destruction of articular cartilage and osteoclastogenesis by inhibiting the activation of the NF-κB and MAPK signalling pathways. In the ACLT mouse model, we found that TOD attenuated the ACLT-induced cartilage erosion and inhibited bone resorption.Conclusions: These results showed that TOD can be adopted as a potential therapeutic agent for OA.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Rosanna Herold ◽  
René Scholtysik ◽  
Selina Moroniak ◽  
Christel Weiss ◽  
Hiroshi Ishikawa ◽  
...  

Abstract Background The Gram-negative bacterium Neisseria meningitidis (Nm) can cause meningitis in humans, but the host signalling pathways manipulated by Nm during central nervous system (CNS) entry are not completely understood. Methods We investigate the role of the mitogen-activated protein kinases (MAPK) Erk1/2 and p38 in an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with Nm serogroup B (NmB) and serogroup C (NmC) strains. A transcriptome analysis of HIBCPP cells following infection with Nm by massive analysis of cDNA ends (MACE) was done to further characterize the cellular response to infection of the barrier. Results Interestingly, whereas NmB and NmC wild type strains required active Erk1/2 and p38 pathways for infection, invasion by capsule-deficient mutants was independent of Erk1/2 and, in case of the NmB strain, of p38 activity. The transcriptome analysis of HIBCPP cells following infection with Nm demonstrated specific regulation of genes involved in the immune response dependent on Erk1/2 signalling. Gene ontology (GO) analysis confirmed loss of MAPK signalling after Erk1/2 inhibition and revealed an additional reduction of cellular responses including NFκB and JAK-STAT signalling. Interestingly, GO terms related to TNF signalling and production of IL6 were lost specifically following Erk1/2 inhibition during infection with wild type Nm, which correlated with the reduced infection rates by the wild type in absence of Erk1/2 signalling. Conclusion Our data point towards a role of MAPK signalling during infection of the CP epithelium by Nm, which is strongly influenced by capsule expression, and affects infection rates as well as the host cell response.


Author(s):  
Hanna Galganska ◽  
Wieslawa Jarmuszkiewicz ◽  
Lukasz Galganski

AbstractMitogen-activated protein kinase (MAPK) signalling pathways are crucial for developmental processes, oncogenesis, and inflammation, including the production of proinflammatory cytokines caused by reactive oxygen species and upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are no drugs that can effectively prevent excessive inflammatory responses in endothelial cells in the lungs, heart, brain, and kidneys, which are considered the main causes of severe coronavirus disease 2019 (COVID-19). In this work, we demonstrate that human MAPKs, i.e. extracellular signal-regulated kinases 1 and 2 (ERK1/2), are CO2 sensors and CO2 is an efficient anti-inflammatory compound that exerts its effects through inactivating ERK1/2 in cultured endothelial cells when the CO2 concentration is elevated. CO2 is a potent inhibitor of cellular proinflammatory responses caused by H2O2 or the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. ERK1/2 activated by the combined action of RBD and cytokines crucial for the development of severe COVID-19, i.e. interferon-gamma (IFNγ) and tumour necrosis factor-α (TNFα), are more effectively inactivated by CO2 than by dexamethasone or acetylsalicylic acid in human bronchial epithelial cells. Previously, many preclinical and clinical studies showed that the transient application of 5–8% CO2 is safe and effective in the treatment of many diseases. Therefore, our research indicates that CO2 may be used for the treatment of COVID-19 as well as the modification of hundreds of cellular pathways.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009515
Author(s):  
Mathurin Dorel ◽  
Bertram Klinger ◽  
Tommaso Mari ◽  
Joern Toedling ◽  
Eric Blanc ◽  
...  

Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically between these cell lines. By generating quantitative perturbation data and mathematical modelling, we determined potential resistance mechanisms. We found that negative feedbacks within MAPK signalling and via the IGF receptor mediate re-activation of MAPK signalling upon treatment in resistant cell lines. By using cell-line specific models, we predict that combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance, and tested these predictions experimentally. In addition, phospho-proteomic profiling confirmed the cell-specific feedback effects and synergy of MEK and IGFR targeted treatment. Our study shows that a quantitative understanding of signalling and feedback mechanisms facilitated by models can help to develop and optimise therapeutic strategies. Our findings should be considered for the planning of future clinical trials introducing MEKi in the treatment of neuroblastoma.


2021 ◽  
Vol 10 (11) ◽  
pp. 704-713
Author(s):  
Hua Zhang ◽  
Jie Li ◽  
Xiaobing Xiang ◽  
Bengen Zhou ◽  
Changqing Zhao ◽  
...  

Aims Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot. Results Tert-butylhydroquinone significantly attenuated cartilage destruction in DMM-induced mice in vivo. It demonstrated clear evidence of inhibiting IL-1β-induced chondrocyte apoptosis, inflammation, and differentiation defect in vitro. Meanwhile, tBHQ inhibited LPS-induced activation of NF-κB and MAPK signalling pathways, and also inhibited LPS-induced reactive oxygen species production and macrophages repolarization in vitro. Conclusion Taken together, tBHQ might be a potential therapeutic strategy for protecting against OA development. Cite this article: Bone Joint Res 2021;10(11):704–713.


Sign in / Sign up

Export Citation Format

Share Document