scholarly journals Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration

2013 ◽  
Vol 288 (46) ◽  
pp. 33156-33170 ◽  
Author(s):  
Kendra A. Williams ◽  
Mu Zhang ◽  
Shengyan Xiang ◽  
Chen Hu ◽  
Jheng-Yu Wu ◽  
...  
2019 ◽  
Vol 55 (98) ◽  
pp. 14848-14851 ◽  
Author(s):  
Haiyan Yang ◽  
Wenxing Lv ◽  
Ming He ◽  
Haiteng Deng ◽  
Haitao Li ◽  
...  

HDAC6 (histone deacetylase 6) catalyses the deacetylation of non-histone substrates, and plays important roles in cell migration, protein degradation and other cellular processes.


2010 ◽  
Vol 17 (2) ◽  
pp. 335-349 ◽  
Author(s):  
Inga Mertens-Walker ◽  
Christine Bolitho ◽  
Robert C Baxter ◽  
Deborah J Marsh

The gonadotropin hypothesis proposes that elevated serum gonadotropin levels may increase the risk of epithelial ovarian cancer (EOC). We have studied the effect of treating EOC cell lines (OV207 and OVCAR-3) with FSH or LH. Both gonadotropins activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and increased cell migration that was inhibited by the MAPK 1 inhibitor PD98059. Both extra- and intracellular calcium ion signalling were implicated in gonadotropin-induced ERK1/2 activation as treatment with either the calcium chelator EGTA or an inhibitor of intracellular calcium release, dantrolene, inhibited gonadotropin-induced ERK1/2 activation. Verapamil was also inhibitory, indicating that gonadotropins activate calcium influx via L-type voltage-dependent calcium channels. The cAMP/protein kinase A (PKA) pathway was not involved in the mediation of gonadotropin action in these cells as gonadotropins did not increase intracellular cAMP formation and inhibition of PKA did not affect gonadotropin-induced phosphorylation of ERK1/2. Activation of ERK1/2 was inhibited by the protein kinase C (PKC) inhibitor GF 109203X as well as by the PKCδ inhibitor rottlerin, and downregulation of PKCδ was inhibited by small interfering RNA (siRNA), highlighting the importance of PKCδ in the gonadotropin signalling cascade. Furthermore, in addition to inhibition by PD98059, gonadotropin-induced ovarian cancer cell migration was also inhibited by verapamil, GF 109203X and rottlerin. Similarly, gonadotropin-induced proliferation was inhibited by PD98059, verapamil, GF 109203X and PKCδ siRNA. Taken together, these results demonstrate that gonadotropins induce both ovarian cancer cell migration and proliferation by activation of ERK1/2 signalling in a calcium- and PKCδ-dependent manner.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 502 ◽  
Author(s):  
Bharath Kumar Velmurugan ◽  
Jen-Tsun Lin ◽  
B. Mahalakshmi ◽  
Yi-Ching Chuang ◽  
Chia-Chieh Lin ◽  
...  

Oral squamous cell carcinoma is the sixth most common type of cancer globally, which is associated with high rates of cancer-related deaths. Metastasis to distant organs is the main reason behind worst prognostic outcome of oral cancer. In the present study, we aimed at evaluating the effects of a natural plant flavonoid, luteolin-7-O-glucoside, on oral cancer cell migration and invasion. The study findings showed that in addition to preventing cell proliferation, luteolin-7-O-glucoside caused a significant reduction in oral cancer cell migration and invasion. Mechanistically, luteolin-7-O-glucoside caused a reduction in cancer metastasis by reducing p38 phosphorylation and downregulating matrix metalloproteinase (MMP)-2 expression. Using a p38 inhibitor, SB203580, we proved that luteolin-7-O-glucoside exerts anti-migratory effects by suppressing p38-mediated increased expression of MMP-2. This is the first study to demonstrate the luteolin-7-O-glucoside inhibits cell migration and invasion by regulating MMP-2 expression and extracellular signal-regulated kinase pathway in human oral cancer cell. The study identifies luteolin-7-O-glucoside as a potential anti-cancer candidate that can be utilized clinically for improving oral cancer prognosis.


2007 ◽  
Vol 27 (23) ◽  
pp. 8190-8204 ◽  
Author(s):  
Mei-Ying Han ◽  
Hidetaka Kosako ◽  
Toshiki Watanabe ◽  
Seisuke Hattori

ABSTRACT Extracellular signal-regulated kinase (ERK) is important for various cellular processes, including cell migration. However, the detailed molecular mechanism by which ERK promotes cell motility remains elusive. Here we characterize epithelial protein lost in neoplasm (EPLIN), an F-actin cross-linking protein, as a novel substrate for ERK. ERK phosphorylates Ser360, Ser602, and Ser692 on EPLIN in vitro and in intact cells. Phosphorylation of the C-terminal region of EPLIN reduces its affinity for actin filaments. EPLIN colocalizes with actin stress fibers in quiescent cells, and stimulation with platelet-derived growth factor (PDGF) induces stress fiber disassembly and relocalization of EPLIN to peripheral and dorsal ruffles, wherein phosphorylation of Ser360 and Ser602 is observed. Phosphorylation of these two residues is also evident during wound healing at the leading edge of migrating cells. Moreover, expression of a non-ERK-phosphorylatable mutant, but not wild-type EPLIN, prevents PDGF-induced stress fiber disassembly and membrane ruffling and also inhibits wound healing and PDGF-induced cell migration. We propose that ERK-mediated phosphorylation of EPLIN contributes to actin filament reorganization and enhanced cell motility.


Sign in / Sign up

Export Citation Format

Share Document