More generalized linear modelling.
Abstract This chapter employs generalized linear modelling using the function glm when we know that variances are not constant with one or more explanatory variables and/or we know that the errors cannot be normally distributed, for example, they may be binary data, or count data where negative values are impossible, or proportions which are constrained between 0 and 1. A glm seeks to determine how much of the variation in the response variable can be explained by each explanatory variable, and whether such relationships are statistically significant. The data for generalized linear models take the form of a continuous response variable and a combination of continuous and discrete explanatory variables.