scholarly journals Monte Carlo localization algorithm based on particle swarm optimization

Automatika ◽  
2019 ◽  
Vol 60 (4) ◽  
pp. 451-461 ◽  
Author(s):  
Cuiran Li ◽  
Jianli Xie ◽  
Wei Wu ◽  
Haoshan Tian ◽  
Yingxin Liang
Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


2014 ◽  
Vol 556-562 ◽  
pp. 4622-4627
Author(s):  
Shu Wang Zhou ◽  
Ming Lei Shu ◽  
Ming Yang ◽  
Ying Long Wang

A range-based localization approach which named gravitational particle swarm optimization localization algorithm (GL) has been proposed. This algorithm considered the influence from the position of anchor nodes to the localization results, GL can directly searched out the coordinates of unknown nodes by the distance from anchor nodes to unknown nodes. As is shown in the experiment results, GL not only has high positioning accuracy, but also overcomes the defect that location error increases rapidly as the ranging error increases, compares with normal schemes (such as method of least squares, ML ) GL’s accuracy can improve 40% as the ranging error is 35%.


Sign in / Sign up

Export Citation Format

Share Document