monte carlo localization
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 48)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei-Min Zheng ◽  
Ning Liu ◽  
Qing-Wei Chai ◽  
Shu-Chuan Chu

The mobile sensor network can sense and collect the data information of the monitored object in real time in the monitoring area. However, the collected information is meaningful only if the location of the node is known. This paper mainly optimizes the Monte Carlo Localization (MCL) in mobile sensor positioning technology. In recent years, the rapid development of heuristic algorithms has provided solutions to many complex problems. This paper combines the compact strategy into the adaptive particle swarm algorithm and proposes a compact adaptive particle swarm algorithm (cAPSO). The compact strategy replaces the specific position of each particle by the distribution probability of the particle swarm, which greatly reduces the memory usage. The performance of cAPSO is tested on 28 test functions of CEC2013, and compared with some existing heuristic algorithms, it proves that cAPSO has a better performance. At the same time, cAPSO is applied to MCL technology to improve the accuracy of node localization, and compared with other heuristic algorithms in the accuracy of MCL, the results show that cAPSO has a better performance.


2021 ◽  
Author(s):  
Li Cui ◽  
Chunyan Rong ◽  
Jingyi Huang ◽  
Andre Rosendo ◽  
Laurent Kneip

2021 ◽  
Vol 83 (6) ◽  
pp. 41-52
Author(s):  
Achmad Akmal Fikri ◽  
Lilik Anifah

The main problem from autonomous robot for navigation is how the robot able to recognize the surrounding environment and know this position. These problems make this research weakness and become a challenge for further research. Therefore, this research focuses on designing a mapping and positioning system using Simultaneous Localization and Mapping (SLAM) method which is implemented on an omnidirectional robot using a LiDAR sensor. The proposes of this research  are mapping system using the google cartographer algorithm combined with the eulerdometry method, eulerdometry is a combination of odometry and euler orientation from IMU sensor, while the positioning system uses the Adaptive Monte Carlo Localization (AMCL) method combined with the eulerdometry method. Testing is carried out by testing the system five times from each system, besides that testing is also carried out at each stage, testing on each sensor used such as the IMU and LiDAR sensors, and testing on system integration, including the eulerdometry method, mapping system and positioning system. The results on the mapping system showed optimal results, even though there was still noise in the results of the maps created, while the positioning system test got an average RMSE value from each map created of 278.55 mm on the x-axis, 207.37 mm on the y-axis, and 4.28o on the orientation robot.


2021 ◽  
Vol 45 (6) ◽  
pp. 843-857
Author(s):  
Russell Buchanan ◽  
Jakub Bednarek ◽  
Marco Camurri ◽  
Michał R. Nowicki ◽  
Krzysztof Walas ◽  
...  

AbstractLegged robot navigation in extreme environments can hinder the use of cameras and lidar due to darkness, air obfuscation or sensor damage, whereas proprioceptive sensing will continue to work reliably. In this paper, we propose a purely proprioceptive localization algorithm which fuses information from both geometry and terrain type to localize a legged robot within a prior map. First, a terrain classifier computes the probability that a foot has stepped on a particular terrain class from sensed foot forces. Then, a Monte Carlo-based estimator fuses this terrain probability with the geometric information of the foot contact points. Results demonstrate this approach operating online and onboard an ANYmal B300 quadruped robot traversing several terrain courses with different geometries and terrain types over more than 1.2 km. The method keeps pose estimation error below 20 cm using a prior map with trained network and using sensing only from the feet, leg joints and IMU.


2021 ◽  
Vol 16 ◽  
pp. 450-456
Author(s):  
Andrii Kudriashov ◽  
Tomasz Buratowski ◽  
Jerzy Garus ◽  
Mariusz Giergiel

In the paper a solution for building of 3D map of unknown terrain for the purposes of control of wheeled autonomous mobile robots operating in an isolated and hard-access area is described. The work environment is represented by a three-dimensional occupancy grid map built with SLAM techniques using LIDAR sensor system. Probabilistic methods such as adaptive Monte Carlo localization and extended Kalman filter are used to concurrently build a map of surroundings and a robot’s pose estimation. A robot’s displacement and orientation are obtained from odometry and inertial navigation system. All algorithms and sub-systems have been implemented and verified with Robot Operation System with a framework for exploration tasks in multi-level buildings


2021 ◽  
Author(s):  
Jessica Giovagnola ◽  
Davide Rigamonti ◽  
Matteo Corno ◽  
Weidong Chen ◽  
Sergio M. Savaresi

Robotica ◽  
2021 ◽  
pp. 1-17
Author(s):  
Qi Liu ◽  
Xiaoguang Di ◽  
Binfeng Xu

Abstract This paper proposes a map-based localization system for autonomous vehicle self-localization in urban environments, which is composed of a pose graph mapping method and 3D curvature feature points – Monte Carlo Localization algorithm (3DCF-MCL). The advantage of 3DCF-MCL is that it combines the high accuracy of the 3D feature points registration and the robustness of particle filter. Experimental results show that 3DCF-MCL can provide an accurate localization for autonomous vehicles with the 3D point cloud map that generated by our mapping method. Compared with other map-based localization algorithms, it demonstrates that 3DCF-MCL outperforms them.


Author(s):  
Paloma Carrasco ◽  
Francisco Cuesta ◽  
Rafael Caballero ◽  
Francisco J. Perez-Grau ◽  
Antidio Viguria

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1772
Author(s):  
Gengyu Ge ◽  
Yi Zhang ◽  
Qin Jiang ◽  
Wei Wang

Localization for estimating the position and orientation of a robot in an asymmetrical environment has been solved by using various 2D laser rangefinder simultaneous localization and mapping (SLAM) approaches. Laser-based SLAM generates an occupancy grid map, then the most popular Monte Carlo Localization (MCL) method spreads particles on the map and calculates the position of the robot by a probabilistic algorithm. However, this can be difficult, especially in symmetrical environments, because landmarks or features may not be sufficient to determine the robot’s orientation. Sometimes the position is not unique if a robot does not stay at the geometric center. This paper presents a novel approach to solving the robot localization problem in a symmetrical environment using the visual features-assisted method. Laser range measurements are used to estimate the robot position, while visual features determine its orientation. Firstly, we convert laser range scans raw data into coordinate data and calculate the geometric center. Secondly, we calculate the new distance from the geometric center point to all end points and find the longest distances. Then, we compare those distances, fit lines, extract corner points, and calculate the distance between adjacent corner points to determine whether the environment is symmetrical. Finally, if the environment is symmetrical, visual features based on the ORB keypoint detector and descriptor will be added to the system to determine the orientation of the robot. The experimental results show that our approach can successfully determine the position of the robot in a symmetrical environment, while ordinary MCL and its extension localization method always fail.


Sign in / Sign up

Export Citation Format

Share Document