Using Mean Sea Surface Topography for Determination of Height System Differences across the Baltic Sea

1999 ◽  
Vol 22 (1) ◽  
pp. 31-35 ◽  
Author(s):  
MARTIN EKMAN
1997 ◽  
Vol 20 (4) ◽  
pp. 307-316 ◽  
Author(s):  
Juhani Kakkuri ◽  
Markku Poutanen

Author(s):  
Christin Appelqvist ◽  
Jon N. Havenhand ◽  
Gunilla B. Toth

Shipworms (teredinids) are highly specialized marine bivalves that consume terrestrially derived wood. Changes in environmental variables may result in shipworms spreading into the Baltic Sea – which would have devastating consequences for maritime cultural heritage and submerged wooden structures. We investigated the distribution and abundance of the shipworms Teredo navalis and Psiloteredo megotara along the Swedish coast in 2006–2008, and compared our findings with data collected at partly the same locations in 1971–1973. Wooden test panels were submerged in near-surface waters at 18 harbours. The presence of shipworms was determined by X-ray radiography of each panel. Sea surface temperature and salinity data were analysed to investigate whether any changes in distribution were correlated to changes in environmental variables. We found that past and present distributions of T. navalis were similar – indicating that no range expansion of shipworms into the Baltic Sea has taken place the last 35 years. The abundance of T. navalis was similar between decades at all investigated sites except two (Arild and Barsebäckshamn), where abundances were higher in 2006–2008. The abundance of T. navalis varied along the coast and was positively correlated to mean sea surface salinity, but not to mean sea surface temperature (2006–2008 data). The distribution and abundance of P. megotara were similar during the two study periods with only single observations at a few sites. In conclusion, we found no evidence of range expansion of shipworms along the Swedish coast.


2020 ◽  
Author(s):  
Marcello Passaro ◽  
Felix L. Müller ◽  
Adili Abulaitijiang ◽  
Ole B. Andersen ◽  
Denise Dettmering ◽  
...  

<p>The use of satellite altimetry at high latitudes and coastal regions is currently limited by the presence of seasonal sea ice coverage, and the proximity to the coast. The semi-enclosed Baltic Sea features seasonal coverage of sea-ice in the northern and coastal regions, and complex jagged coastlines with a huge number of small islands. However, as a semi-enclosed sea with a considerable extent, the Baltic Sea features a much-reduced tidal signal, both open- and coastal- waters, and an extensive multi-national network of tide-gauges. These factors maximise opportunities to drive improvements in sea-level estimations for coastal, and seasonal-ice regions.</p><p>The ESA Baltic SEAL project, launched in April 2019, aims to exploit these opportunities. It is generating and validating a suite of enhanced multi-mission sea level products. Processing is developed specifically for coastal regions, with the objective of achieving a consistent description of the sea-level variability in terms of long-term trends, seasonal variations and a mean sea-surface. These will advance knowledge on adapting processing algorithms, to account for seasonal ice, and complex coastlines. Best practice approaches will be available to update current state-of-the-art datasets.</p><p>In order to fulfill these goals, a novel altimeter re-tracking strategy has been developed. This enables the homogeneous determination of sea-surface heights for open-ocean, coastal and sea-ice conditions (ALES+). An unsupervised classification algorithm based on artificial intelligence routines has been developed and tailored to ingest data from all current and past satellite altimetry missions. This identifies radar echoes, reflected by narrow cracks within the sea-ice domain. Finally, the improved altimetry observations are gridded onto a triangulated surface mesh, featuring a spatial resolution greater than 1/4 degree. This is more suitable for utility for coastal areas, and use by coastal stakeholders.</p><p>In addition to utilizing a wide range of altimetry data (Delay-Doppler and Pulse-Limited systems), the Baltic SEAL initiative harnesses the Baltic Seas unique characteristics to test novel geophysical corrections (e.g. wet troposphere correction), use the latest generation of regional altimetry datasets, and evaluate the benefits of the newest satellite altimetry missions. This presentation outlines the methodology and results achieved to date. These include estimations of a new regional mean sea surface, and insights into the trends of the sea level along the altimetry tracks with the longest records. The transfer of advances to other regions and sea-level initiatives are also highlighted.</p>


2021 ◽  
Vol 13 (2) ◽  
pp. 259
Author(s):  
Shuping Zhang ◽  
Anna Rutgersson ◽  
Petra Philipson ◽  
Marcus B. Wallin

Marginal seas are a dynamic and still to large extent uncertain component of the global carbon cycle. The large temporal and spatial variations of sea-surface partial pressure of carbon dioxide (pCO2) in these areas are driven by multiple complex mechanisms. In this study, we analyzed the variable importance for the sea surface pCO2 estimation in the Baltic Sea and derived monthly pCO2 maps for the marginal sea during the period of July 2002–October 2011. We used variables obtained from remote sensing images and numerical models. The random forest algorithm was employed to construct regression models for pCO2 estimation and produce the importance of different input variables. The study found that photosynthetically available radiation (PAR) was the most important variable for the pCO2 estimation across the entire Baltic Sea, followed by sea surface temperature (SST), absorption of colored dissolved organic matter (aCDOM), and mixed layer depth (MLD). Interestingly, Chlorophyll-a concentration (Chl-a) and the diffuse attenuation coefficient for downwelling irradiance at 490 nm (Kd_490nm) showed relatively low importance for the pCO2 estimation. This was mainly attributed to the high correlation of Chl-a and Kd_490nm to other pCO2-relevant variables (e.g., aCDOM), particularly in the summer months. In addition, the variables’ importance for pCO2 estimation varied between seasons and sub-basins. For example, the importance of aCDOM were large in the Gulf of Finland but marginal in other sub-basins. The model for pCO2 estimate in the entire Baltic Sea explained 63% of the variation and had a root of mean squared error (RMSE) of 47.8 µatm. The pCO2 maps derived with this model displayed realistic seasonal variations and spatial features of sea surface pCO2 in the Baltic Sea. The spatially and seasonally varying variables’ importance for the pCO2 estimation shed light on the heterogeneities in the biogeochemical and physical processes driving the carbon cycling in the Baltic Sea and can serve as an important basis for future pCO2 estimation in marginal seas using remote sensing techniques. The pCO2 maps derived in this study provided a robust benchmark for understanding the spatiotemporal patterns of CO2 air-sea exchange in the Baltic Sea.


Author(s):  
Valeriy I. Agoshkov ◽  
Eugene I. Parmuzin ◽  
Vladimir B. Zalesny ◽  
Victor P. Shutyaev ◽  
Natalia B. Zakharova ◽  
...  

AbstractA mathematical model of the dynamics of the Baltic Sea is considered. A problem of variational assimilation of sea surface temperature (SST) data is formulated and studied. Based on variational assimilation of satellite observation data, an algorithm solving the inverse problem of heat flux restoration on the interface of two media is proposed. The results of numerical experiments reconstructing the heat flux functions in the problem of variational assimilation of SST observation data are presented. The influence of SST assimilation on other hydrodynamic parameters of the model is considered.


2016 ◽  
Vol 13 (4) ◽  
pp. 1009-1018 ◽  
Author(s):  
Mati Kahru ◽  
Ragnar Elmgren ◽  
Oleg P. Savchuk

Abstract. Changes in the phenology of physical and ecological variables associated with climate change are likely to have significant effect on many aspects of the Baltic ecosystem. We apply a set of phenological indicators to multiple environmental variables measured by satellite sensors for 17–36 years to detect possible changes in the seasonality in the Baltic Sea environment. We detect significant temporal changes, such as earlier start of the summer season and prolongation of the productive season, in several variables ranging from basic physical drivers to ecological status indicators. While increasing trends in the absolute values of variables like sea-surface temperature (SST), diffuse attenuation of light (Ked490) and satellite-detected chlorophyll concentration (CHL) are detectable, the corresponding changes in their seasonal cycles are more dramatic. For example, the cumulative sum of 30 000 W m−2 of surface incoming shortwave irradiance (SIS) was reached 23 days earlier in 2014 compared to the beginning of the time series in 1983. The period of the year with SST of at least 17 °C has almost doubled (from 29 days in 1982 to 56 days in 2014), and the period with Ked490 over 0.4 m−1 has increased from about 60 days in 1998 to 240 days in 2013 – i.e., quadrupled. The period with satellite-estimated CHL of at least 3 mg m−3 has doubled from approximately 110 days in 1998 to 220 days in 2013. While the timing of both the phytoplankton spring and summer blooms have advanced, the annual CHL maximum that in the 1980s corresponded to the spring diatom bloom in May has now shifted to the summer cyanobacteria bloom in July.


2021 ◽  
Author(s):  
Tuomas Kärnä ◽  
Ida Ringgaard ◽  
Vasily Korabel ◽  
Adam Nord ◽  
Patrik Ljungemyr ◽  
...  

<p>We present Nemo-Nordic 2.0, the latest version of the operational marine forecasting model for the Baltic Sea used and developed in the Baltic Monitoring Forecasting Centre (BAL MFC) under the Copernicus Marine Environment Monitoring Service (CMEMS). The most notable differences between Nemo-Nordic 2.0 and its predecessor Nemo-Nordic 1.0 are the switch from NEMO 3.6 to NEMO 4.0 and an increase in horizontal resolution from 2 to 1 nautical mile. In addition, the model's bathymetry and bottom friction formulation have been updated. The model configuration was specially tuned to represent Major Baltic Inflow events. Focusing on a 2-year validation period from October 1, 2014, covering one Major Baltic Inflow event, Nemo-Nordic 2.0 simulates Sea Surface Height (SSH) well: centralized Root-Mean-Square Deviation (CRMSD) is within 10 cm for most stations outside the Inner Danish Waters. CRMSD is higher at some stations where small-scale topographical features cannot be correctly resolved. SSH variability tends to be overestimated in the Baltic Sea and underestimated in the Inner Danish Waters. Nemo-Nordic 2.0 represents Sea Surface Temperature (SST) and Salinity (SSS) well, although there is a negative bias around -0.5°C in SST. The 2014 Major Baltic Inflow event is well reproduced. The simulated salt pulse agrees well with observations in the Arkona basin and progresses into the Gotland basin in 3 to 4 months.</p>


2009 ◽  
Vol 29 (7) ◽  
pp. 870-885 ◽  
Author(s):  
Anders Omstedt ◽  
Erik Gustafsson ◽  
Karin Wesslander

Sign in / Sign up

Export Citation Format

Share Document