Thermoelastic interaction in functionally graded thick hollow cylinder with temperature-dependent properties

2018 ◽  
Vol 41 (4) ◽  
pp. 399-417 ◽  
Author(s):  
Y. Z. Wang ◽  
D. Liu ◽  
Q. Wang ◽  
J. Z. Zhou
Author(s):  
Mohamed Abdelsabour Fahmy

AbstractThe main aim of this article is to develop a new boundary element method (BEM) algorithm to model and simulate the nonlinear thermal stresses problems in micropolar functionally graded anisotropic (FGA) composites with temperature-dependent properties. Some inside points are chosen to treat the nonlinear terms and domain integrals. An integral formulation which is based on the use of Kirchhoff transformation is firstly used to simplify the transient heat conduction governing equation. Then, the residual nonlinear terms are carried out within the current formulation. The domain integrals can be effectively treated by applying the Cartesian transformation method (CTM). In the proposed BEM technique, the nonlinear temperature is computed on the boundary and some inside domain integral. Then, nonlinear displacement can be calculated at each time step. With the calculated temperature and displacement distributions, we can obtain the values of nonlinear thermal stresses. The efficiency of our proposed methodology has been improved by using the communication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the resulting linear systems arising from the BEM to reduce the iterations number and computation time. The numerical outcomes establish the influence of temperature-dependent properties on the nonlinear temperature distribution, and investigate the effect of the functionally graded parameter on the nonlinear displacements and thermal stresses, through the micropolar FGA composites with temperature-dependent properties. These numerical outcomes also confirm the validity, precision and effectiveness of the proposed modeling and simulation methodology.


2015 ◽  
Vol 1096 ◽  
pp. 297-301
Author(s):  
Gui Ming Rong ◽  
Hiroyuki Kisu

A formulation using the deviatoric stress and the continuity equation is extended to the analysis of the dynamic response of functionally graded materials (FGMs) subjected to a thermal shock by smoothed particle hydrodynamics (SPH), in which temperature dependent properties of materials are considered. Several dynamic thermal stress problems are analyzed to investigate the fluctuation of thermal stress at the initial stage under three types of thermal conditions, with the addition of two kinds of mechanical boundary conditions.


2017 ◽  
Vol 24 (3) ◽  
pp. 455-469 ◽  
Author(s):  
Pham Hong Cong ◽  
Pham Thi Ngoc An ◽  
Nguyen Dinh Duc

AbstractThis article investigates the nonlinear stability of eccentrically stiffened moderately thick plates made of functionally graded materials (FGM) subjected to in-plane compressive, thermo-mechanical loads. The equilibrium and compatibility equations for the moderately thick plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections, temperature-dependent properties with Pasternak type elastic foundations. By applying the Galerkin method and using a stress function, the effects of material and geometrical properties, temperature-dependent material properties, elastic foundations, boundary conditions, and eccentric stiffeners on the buckling and post-buckling loading capacity of the eccentrically stiffened moderately thick FGM plates in thermal environments are analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document