Young's modulus of thin films using depth-sensing indentation

2010 ◽  
Vol 90 (1) ◽  
pp. 9-22 ◽  
Author(s):  
J.V. Fernandes ◽  
J.M. Antunes ◽  
N.A. Sakharova ◽  
M.C. Oliveira ◽  
L.F. Menezes
1986 ◽  
Vol 1 (4) ◽  
pp. 601-609 ◽  
Author(s):  
M.F. Doerner ◽  
W.D. Nix

Depth-sensing indentation instruments provide a means for studying the elastic and plastic properties of thin films. A method for obtaining hardness and Young's modulus from the data obtained from these types of instruments is described. Elastic displacements are determined from the data obtained during unloading of the indentation. Young's modulus can be calculated from these measurements. In addition, the elastic contribution to the total displacement can be removed in order to calculate hardness. Determination of the exact shape of the indenter at the tip is critical to the measurement of both hardness and elastic modulus for indentation depths less than a micron. Hardness is shown to depend on strain rate, especially when the hardness values are calculated from the data along the loading curves.


2006 ◽  
Vol 514-516 ◽  
pp. 1472-1476
Author(s):  
Jorge M. Antunes ◽  
Nataliya A. Sakharova ◽  
José Valdemar Fernandes ◽  
Luís Filipe Menezes

Depth sensing indentation equipment allows the mechanical properties of thin films to be easily determined, particularly the hardness and Young’s modulus. In order to minimize the influence of the substrate on the measured properties, the indentation depth must be limited to a small fraction of the film’s thickness. However, for very thin films, the determination of the contribution of the substrate and the film to the measured mechanical properties becomes a hard task, because both deform plastically. The numerical simulation of ultramicrohardness tests can be a helpful tool towards better understanding of the influence of the parameters involved in the mechanical characterization of thin films. For this purpose, a three-dimensional numerical simulation home code, HAFILM, was used to simulate ultramicrohardness tests on coated substrates. Materials with different Young’s modulus film/substrate ratios were tested. Analyses of strain and stress distributions for several indentation depth values were performed, in order to clarify the composite behaviour.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


1999 ◽  
Vol 594 ◽  
Author(s):  
T. Y. Zhang ◽  
Y. J. Su ◽  
C. F. Qian ◽  
M. H. Zhao ◽  
L. Q. Chen

AbstractThe present work proposes a novel microbridge testing method to simultaneously evaluate the Young's modulus, residual stress of thin films under small deformation. Theoretic analysis and finite element calculation are conducted on microbridge deformation to provide a closed formula of deflection versus load, considering both substrate deformation and residual stress in the film. Silicon nitride films fabricated by low pressure chemical vapor deposition on silicon substrates are tested to demonstrate the proposed method. The results show that the Young's modulus and residual stress for the annealed silicon nitride film are respectively 202 GPa and 334.9 MPa.


2016 ◽  
Vol 18 (31) ◽  
pp. 21508-21517 ◽  
Author(s):  
Xiao-Ye Zhou ◽  
Bao-Ling Huang ◽  
Tong-Yi Zhang

Surfaces of nanomaterials play an essential role in size-dependent material properties.


1994 ◽  
Vol 60 (572) ◽  
pp. 1108-1113
Author(s):  
Hidetoshi Yanai ◽  
Nobuyuki Kishine ◽  
Yukari Komaba ◽  
Yukitaka Murakami

Sign in / Sign up

Export Citation Format

Share Document