Coarsening in Sintering: Grain Shape Distribution, Grain Size Distribution, and Grain Growth Kinetics in Solid-Pore Systems

2010 ◽  
Vol 35 (4) ◽  
pp. 263-305 ◽  
Author(s):  
Randall M. German
2007 ◽  
Vol 558-559 ◽  
pp. 1005-1012 ◽  
Author(s):  
Giuseppe Carlo Abbruzzese ◽  
Massimiliano Buccioni

The statistical model of grain growth is able to predict the effect of Zener drag on the grain size distribution evolution and on grain growth kinetics [1, 2]. This paper, in the same framework, will treat the case of atoms drag on grain boundary movement. The mechanism by which atoms drag operates is significantly different by that of Zener. The corresponding peculiar features will result in a specific grain size distribution evolution with considerable change of grain growth kinetics and distribution shape from that of normal grain growth case as a function of the intensity of the pinning conditions.


1992 ◽  
Vol 94-96 ◽  
pp. 325-330 ◽  
Author(s):  
Y. Takayama ◽  
T. Tozawa ◽  
H. Kato ◽  
Norio Furushiro ◽  
S. Hori

1996 ◽  
Vol 34 (8) ◽  
pp. 1225-1230 ◽  
Author(s):  
S. Vogel ◽  
P. Klimanek ◽  
D.Juul Jensen ◽  
H. Richter

2015 ◽  
Vol 17 (11) ◽  
pp. 1598-1607 ◽  
Author(s):  
Leyla Hashemi-Sadraei ◽  
S. Ebrahim Mousavi ◽  
Enrique J. Lavernia ◽  
Julie M. Schoenung

1989 ◽  
Vol 53 (2) ◽  
pp. 164-169
Author(s):  
Yoshimasa Takayama ◽  
Tatsumi Tozawa ◽  
Hajime Kato ◽  
Norio Furushiro ◽  
Shigenori Hori

Author(s):  
Ida Borgh ◽  
Peter Hedström ◽  
Tomas Persson ◽  
Susanne Norgren ◽  
Annika Borgenstam ◽  
...  

2004 ◽  
Vol 467-470 ◽  
pp. 1081-1086 ◽  
Author(s):  
M.W. Nordbakke ◽  
N. Ryum ◽  
Ola Hunderi

Computer simulations of 2D normal grain growth have shown that size correlations between adjacent grains exist in 2D grain structures. These correlations prevail during the coarsening process and influence on the kinetics of the process and on the grain size distribution. Hillert’s analysis starts with the assumption that all grains in the structure have the same environment. Since computer simulations contradict this assumption, the mean-field theory for normal grain growth needs to be modified. A first attempt was made by Hunderi and Ryum, who modified Hillert’s growth law to include the effect of spatial grain size correlations. In the 1D case the distributions derived by means of the modified growth law agreed well with simulation data. However, the distribution derived for 2D grain growth retained unwanted properties of the Hillert distribution. We review some recent progress in developing a mean-field statistical theory. A paradox related to curvilinear polygons is shown to support the expectation that the grain size distribution has a finite cutoff.


2011 ◽  
Vol 172-174 ◽  
pp. 809-814 ◽  
Author(s):  
Kumkum Banerjee ◽  
Michel Perez ◽  
Matthias Militzer

Non-isothermal austenite grain growth kinetics under the influence of several combinations of Nb, Ti and Mo containing complex precipitates has been studied in a microalloyed linepipe steel. The goal of these studies is the development of a grain growth model to predict the austenite grain size in the weld heat affected zone (HAZ). A detailed electron microscopic investigations of the as-received steel proved the presence of Ti-rich, Nb-rich and Mo-rich precipitates. Inter and intragranular precipitates of ~5-150 nm have been observed. The steel has been subjected to austenitizing heat treatments to selected peak temperatures of 950, 1150 and 1350°C at various heating rates of 10, 100 and 1000°C/s. Thermal cycles have been found to have a strong effect on the final austenite grain size. The increase in heating rate from 100 to 1000°C/s has a negligible difference in the austenite grain size irrespective of the austenitizing temperature. However, the increase in grain size has been noticed at 10°C/s heating rate for all the austenitizing temperatures. The austenite grain growth kinetics have been explained taking into account the austenite growth in the presence of precipitates.


Sign in / Sign up

Export Citation Format

Share Document