grain structures
Recently Published Documents


TOTAL DOCUMENTS

411
(FIVE YEARS 81)

H-INDEX

34
(FIVE YEARS 4)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 159
Author(s):  
Nicholas Olynik ◽  
Bin Cheng ◽  
David J. Sprouster ◽  
Chad M. Parish ◽  
Jason R. Trelewicz

Exploiting grain boundary engineering in the design of alloys for extreme environments provides a promising pathway for enhancing performance relative to coarse-grained counterparts. Due to its attractive properties as a plasma facing material for fusion devices, tungsten presents an opportunity to exploit this approach in addressing the significant materials challenges imposed by the fusion environment. Here, we employ a ternary alloy design approach for stabilizing W against recrystallization and grain growth while simultaneously enhancing its manufacturability through powder metallurgical processing. Mechanical alloying and grain refinement in W-10 at.% Ti-(10,20) at.% Cr alloys are accomplished through high-energy ball milling with transitions in the microstructure mapped as a function of milling time. We demonstrate the multi-modal nature of the resulting nanocrystalline grain structure and its stability up to 1300 °C with the coarser grain size population correlated to transitions in crystallographic texture that result from the preferred slip systems in BCC W. Field-assisted sintering is employed to consolidate the alloy powders into bulk samples, which, due to the deliberately designed compositional features, are shown to retain ultrafine grain structures despite the presence of minor carbides formed during sintering due to carbon impurities in the ball-milled powders.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 221
Author(s):  
Xiaoting Luo ◽  
Zhiheng Huang ◽  
Shuanjin Wang ◽  
Min Xiao ◽  
Yuezhong Meng ◽  
...  

As thermal management in 3DIC integration becomes increasingly important in advanced semiconductor node processes, novel experimental and modeling approaches are in great demand to reveal the critical material issues involving multiscale microstructures that govern the behavior of through-silicon-via (TSV) protrusion. Here, a coarse-grained phase-field crystal model properly coupled with mechanics through the atomic density field is used to simulate the formation of polycrystalline structures and protrusion of nano-TSVs from the atomic scale. TSVs with different grain structures are directly loaded, and protrusion/intrusion profiles are obtained along with displacement, stress, and strain fields. Thermodynamic driving forces from external loadings and the mismatch of Young’s modulus between adjoining grains as well as detailed displacement and strain distributions are ascribed to control the complex deformation in TSVs. TSVs with sizes up to around 30 nm and an aspect ratio of 4 are successfully investigated, and a further increase in the size and aspect ratio to cover the micrometer range is feasible, which lays down a solid basis toward a multiscale material database for simulation inputs to the design of TSV-based 3DIC integration and relevant electronic design automation (EDA) tools.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Leyla Sadighpour ◽  
Azam S. Mostafavi ◽  
Maryam Pirmoradian ◽  
Fatemeh Alipuryalda

Objectives. Despite the widespread use of resin cements in cementing dental restorations, their bond strength to CAD/CAM base metal alloys is not widely studied. This study aimed to evaluate the microshear bond strength (μSBS) between cobalt-chrome (Co-Cr) alloys fabricated using casting or CAD/CAM methods with three types of resin cements. Materials and Methods. Fifty Co-Cr blocks were prepared with CAD/CAM or casting technique. Specimens were divided using primer or not and bonded to three types of resin cements: Panavia F2, RelyX Unicem, and Duo-Link. The differences between the mean μSBS values were analyzed using the two-way ANOVA test and Tukey analysis (α = 0.05). The mode of failure was evaluated using a stereomicroscope. In addition, the specimens were examined by scanning electron microscopy (SEM) based on two received signals: backscattered electrons (SEB) and secondary electrons (SEs). One intact alloy specimen in each group was analyzed by energy-dispersive X-ray spectroscopy (EDX). Results. Most of the specimens in the no-primer group were prematurely debonded. Statistical analyses showed that the interaction between the alloy substrate and cement type was significant ( p = 0.001 ). The bond strength of Panavia F2 was significantly higher than Duo-Link in the CAD/CAM group ( p = 0.001 ). SEM evaluation confirmed the difference in grain structures, while EDX showed no remarkable difference in the chemical composition of the alloy substrates. Conclusion. Alloy fabrication technique may influence the bond strength of resin cements. In the CAD/CAM group, cement containing MDP molecules exhibited higher strength than the etch-and-rinse one.


Author(s):  
Keisuke Nishimoto ◽  
Kohei Shima ◽  
Shigefusa F. Chichibu ◽  
Mutsumi Sugiyama

Abstract Epitaxial growths of NiO thin films were realized on (0001) sapphire and (100) MgO substrates by using a reactive RF magnetron sputtering method. The NiO epilayers grown on a (0001) sapphire exhibited the (111)-oriented double-domain structure, which comprised of a triangular and its inverted triangular grains. Meanwhile, the NiO epilayers on a (100) MgO exhibited the (100)-oriented single-domain structure, which comprised of quadrangular grains. The observed grain structures most likely reflect the growth planes of respective NiO epilayers, and, mixed crystals of NiO and MgO were present near the interface. Therefore, A (100) MgO substrate is suitable for obtaining a single-domain NiO epilayer, whereas a (0001) sapphire substrate is suitable for obtaining a NiO epilayer without interdiffusion between NiO and sapphire. These NiO epilayers will be expected for applying the physical properties evaluation using photoluminescence or Hall measurements, and the fabrication of electrical or optical devices.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012023
Author(s):  
Jianxin Wu ◽  
Qilua Ye ◽  
Bin Yang ◽  
Chong Gao

Abstract Microstructures of AA5252 aluminum alloy sheets from surface to the center were observed by use of scanning electron microscope with electron backscatter detector assembly, and treated by anodic oxidation. Results showed that changes of the grain structures and textures of the AA5252 alloy sheets occur from the surface to the center layers. The anodic oxidation surface quality of the AA5252 aluminum alloy is closely related to the area ratio and distribution uniformity of Cube texture.


Sign in / Sign up

Export Citation Format

Share Document