Generation of degenerate modes in suddenly created cold weakly nonlinear magnetized plasma

2009 ◽  
Vol 17 (4) ◽  
pp. 301-308
Author(s):  
Z. M. Trifković ◽  
J. M. Cvetić ◽  
P. Osmokrović
2004 ◽  
Vol 11 (2) ◽  
pp. 219-228 ◽  
Author(s):  
S. S. Ghosh ◽  
G. S. Lakhina

Abstract. The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.


2007 ◽  
Vol 73 (6) ◽  
pp. 933-946
Author(s):  
S. PHIBANCHON ◽  
M. A. ALLEN ◽  
G. ROWLANDS

AbstractWe determine the growth rate of linear instabilities resulting from long-wavelength transverse perturbations applied to periodic nonlinear wave solutions to the Schamel–Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation which governs weakly nonlinear waves in a strongly magnetized cold-ion plasma whose electron distribution is given by two Maxwellians at slightly different temperatures. To obtain the growth rate it is necessary to evaluate non-trivial integrals whose number is kept to a minimum by using recursion relations. It is shown that a key instance of one such relation cannot be used for classes of solution whose minimum value is zero, and an additional integral must be evaluated explicitly instead. The SKdVZK equation contains two nonlinear terms whose ratio b increases as the electron distribution becomes increasingly flat-topped. As b and hence the deviation from electron isothermality increases, it is found that for cnoidal wave solutions that travel faster than long-wavelength linear waves, there is a more pronounced variation of the growth rate with the angle θ at which the perturbation is applied. Solutions whose minimum values are zero and which travel slower than long-wavelength linear waves are found, at first order, to be stable to perpendicular perturbations and have a relatively narrow range of θ for which the first-order growth rate is not zero.


2000 ◽  
Vol 64 (4) ◽  
pp. 411-426 ◽  
Author(s):  
S. MUNRO ◽  
E. J. PARKES

In the context of ion-acoustic waves in a magnetized plasma comprising cold ions and non-isothermal electrons, small-amplitude, weakly nonlinear waves have been shown previously by Munro and Parkes to be governed by a modified version of the Zakharov–Kuznetsov equation. In this paper, we consider solitary travelling-wave solutions to this equation that propagate along the magnetic field. We investigate the initial growth rate γ(k) of a small transverse sinusoidal perturbation of wavenumber k. The instability range is shown to be 0 < k < 3. We use the multiple-scale perturbation method developed by Allen and Rowlands to determine a consistent expansion of γ about k = 0 and k = 3. By combining these results in the form of a Padé approximant, an analytical expression for γ is found that is valid for 0 < k < 3. γ is also determined by using the variational method developed by Bettinson and Rowlands. The two results for γ are compared with a numerical determination.


2007 ◽  
Vol 73 (2) ◽  
pp. 215-229 ◽  
Author(s):  
M.A. ALLEN ◽  
S. PHIBANCHON ◽  
G. ROWLANDS

Abstract.Weakly nonlinear waves in strongly magnetized plasma with slightly non-isothermal electrons are governed by a modified Zakharov–Kuznetsov (ZK) equation, containing both quadratic and half-order nonlinear terms, which we refer to as the Schamel–Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation. We present a method to obtain an approximation for the growth rate, γ, of sinusoidal perpendicular perturbations of wavenumber, k, to SKdVZK solitary waves over the entire range of instability. Unlike for (modified) ZK equations with one nonlinear term, in this method there is no analytical expression for kc, the cut-off wavenumber (at which the growth rate is zero) or its corresponding eigenfunction. We therefore obtain approximate expressions for these using an expansion parameter, a, related to the ratio of the nonlinear terms. The expressions are then used to find γ for k near kc as a function of a. The approximant derived from combining these analytical results with the ones for small k agrees very well with the values of γ obtained numerically. It is found that both kc and the maximum growth rate decrease as the electron distribution becomes progressively less peaked than the Maxwellian. We also present new algebraic and rarefactive solitary wave solutions to the equation.


2018 ◽  
Vol 50 (1) ◽  
pp. 20-38 ◽  
Author(s):  
Denis Ya. Khusainov ◽  
Jozef Diblik ◽  
Jaromir Bashtinec ◽  
Andrey V. Shatyrko

2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Sign in / Sign up

Export Citation Format

Share Document