Thermal modeling of drilling process in titanium alloy (Ti-6Al-4V)

2020 ◽  
Vol 24 (3) ◽  
pp. 341-365
Author(s):  
Ankit Kumar ◽  
Rajneesh Bhardwaj ◽  
Suhas S. Joshi
2017 ◽  
Vol 748 ◽  
pp. 254-258
Author(s):  
Chang Yi Liu ◽  
Bai Shou Zhang ◽  
Suman Shrestha

Drilling experiments of titanium alloy Ti6Al4V were conducted. Taking the speed and feed as the process variables, a set of experimental cutting forces are obtained and compared. From the experimental results it is concluded that within the experimental extent the thrust force and torque of drilling process rises with the feed rate. The lower spindle speed resulted in the greater amount of thrust. Feed rates have greater influence on the thrust force than the spindle speed. The combination of greater feed rate and lower spindle speed results in the maximum amount of thrust. However, combination of greater feed rate and spindle speed resulted in maximum amount of torque.


2017 ◽  
Vol 29 ◽  
pp. 194-203 ◽  
Author(s):  
A.T. Kuzu ◽  
K. Rahimzadeh Berenji ◽  
B.C. Ekim ◽  
M. Bakkal

2018 ◽  
Vol 777 ◽  
pp. 327-332
Author(s):  
Ornsurang Netprasert ◽  
Noppakao Chimyo ◽  
Suphaphich Phimphun ◽  
Jantakarn Sukjan ◽  
Viboon Tangwarodomnukun ◽  
...  

Electrochemical machining process is an advanced material removal technique offering high precision and introducing no heat damage to the work material. The shape and size of machined area are highly dependent on some process parameters such as voltage, electrolyte and inter-electrode gap. To further enable a more insight into the process performance, this paper investigates the influences of applied voltage, electrolyte concentration and inter-electrode gap on the shape and sizes of hole produced by the electrochemical drilling process. Titanium alloy (Ti-6Al-4V) was used as a work sample in this study as it has been extensively used in many advanced applications. The experimental result indicated that the use of high voltage and high electrolyte concentration can enlarge and deepen hole in the workpiece, while the inter-electrode gap provided less effect to the hole features. The maximum hole depth can reach 300 μm within 60 seconds when the applied voltage of 30 V, the inter-electrode gap of 10 μm and the electrolyte concentration of 10%wt were used. However, with this setup, the obtained cut profile became a non-uniform V-shaped hole. The use of lower voltage was instead recommended to yield a better cut quality with U-shaped profile.


2018 ◽  
Vol 16 (1_suppl) ◽  
pp. 150-156 ◽  
Author(s):  
Zhanfeng Liu ◽  
Yanshu Liu ◽  
Xiaolan Han ◽  
Wencui Zheng

Introduction: In this study, the super-long deep-hole drilling of a titanium alloy was investigated. Methods: According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Results: Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy’s machining were also evaluated. Conclusions: Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.


2020 ◽  
Vol 993 ◽  
pp. 3-11
Author(s):  
Tian Qi Wang ◽  
Zhan Feng Liu ◽  
Yuan Ying Qiu ◽  
Ya Zhou Feng ◽  
Xiao Lan Han

In drilling the ultra-slim small diameter deep hole of titanium alloy, the problem of chip breaking and chip removal is common. When the drill is working normally, the ultrasonic vibration can be applied for the drill bit to cut the bit in the vibration to form a pulse. The cutting force waveform in drilling, should select the reasonable vibration frequency, amplitude, feed amount, workpiece rotation and other parameters to match, control the size and shape of the chip, get satisfactory chips, and avoid chip clogging. In this study, the ANSYS finite element simulation software was used to simulate the TC4 drilling process, and the difference between ultrasonic vibration drilling and ordinary drilling was analyzed. Drilling experiments were carried out. The experimental results show that compared with conventional drilling, ultrasonic vibration drilling has better surface quality, reduced tool wear and increased material removal rate.


Sign in / Sign up

Export Citation Format

Share Document