scholarly journals Role of the 40S beak ribosomal protein eS12 in ribosome biogenesis and function in Saccharomyces cerevisiae

RNA Biology ◽  
2020 ◽  
Vol 17 (9) ◽  
pp. 1261-1276
Author(s):  
Sara Martín-Villanueva ◽  
José Fernández-Fernández ◽  
Olga Rodríguez-Galán ◽  
Julia Fernández-Boraita ◽  
Eduardo Villalobo ◽  
...  
2021 ◽  
Vol 22 (9) ◽  
pp. 4359
Author(s):  
Sara Martín-Villanueva ◽  
Gabriel Gutiérrez ◽  
Dieter Kressler ◽  
Jesús de la Cruz

Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.


2020 ◽  
Vol 21 (3) ◽  
pp. 1151 ◽  
Author(s):  
Shannon E. Dougherty ◽  
Austin O. Maduka ◽  
Toshifumi Inada ◽  
Gustavo M. Silva

The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.


2012 ◽  
Vol 32 (16) ◽  
pp. 3228-3241 ◽  
Author(s):  
R. Babiano ◽  
M. Gamalinda ◽  
J. L. Woolford ◽  
J. de la Cruz

2007 ◽  
Vol 25 (4) ◽  
pp. 209-226 ◽  
Author(s):  
Katarzyna Jastrzebski ◽  
Katherine M. Hannan ◽  
Elissaveta B. Tchoubrieva ◽  
Ross D. Hannan ◽  
Richard B. Pearson

1997 ◽  
Vol 17 (4) ◽  
pp. 1959-1965 ◽  
Author(s):  
J Vilardell ◽  
J R Warner

Ribosomal protein L32 of Saccharomyces cerevisiae binds to and regulates the splicing and the translation of the transcript of its own gene. Selecting for mutants deficient in the regulation of splicing, we have identified a mutant form of L32 that no longer binds to the transcript of RPL32 and therefore does not regulate its splicing. The mutation is the deletion of an isoleucine residue from a highly conserved hydrophobic domain near the middle of L32. The mutant protein supports growth, at a reduced rate, and is found at normal levels in mature ribosomes. However, in cells homozygous for the mutant gene, the rate of processing of the ribosomal RNA component of the 60S ribosomal subunit is severely reduced, leading to an insufficiency of 60S subunits. L32 must be considered a remarkable protein. Composed of only 104 amino acids, it appears to interact with three distinct RNA molecules to influence three different elements of RNA processing and function in three different locations of the cell: the processing of pre-rRNA in the nucleolus, the splicing of the RPL32 transcript in the nucleus, and the translation of the spliced RPL32 mRNA in the cytoplasm.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1035 ◽  
Author(s):  
Sophie Sleiman ◽  
Francois Dragon

Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson–Gilford progeria syndrome.


2006 ◽  
Vol 173 (3) ◽  
pp. 361-371 ◽  
Author(s):  
Alexis S. Madrid ◽  
Joel Mancuso ◽  
W. Zacheus Cande ◽  
Karsten Weis

The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus.


FEBS Journal ◽  
2016 ◽  
Vol 283 (16) ◽  
pp. 2968-2985 ◽  
Author(s):  
Francisco J. Espinar-Marchena ◽  
José Fernández-Fernández ◽  
Olga Rodríguez-Galán ◽  
Antonio Fernández-Pevida ◽  
Reyes Babiano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document