ribosomal protein s6
Recently Published Documents


TOTAL DOCUMENTS

598
(FIVE YEARS 80)

H-INDEX

61
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Satoshi Yamaguchi ◽  
Dongxiao Zhang ◽  
Akihiro Katayama ◽  
Naoko Kurooka ◽  
Ryosuke Sugawara ◽  
...  

MicroRNAs expressed in adipocytes are involved in transcriptional regulation of target mRNAs in obesity, but miRNAs critically involved in this process is not well characterized. Here, we identified upregulation of miR-221-3p and miR-222-3p in the white adipose tissues in C57BL/6 mice fed with high fat-high sucrose (HFHS) chow by RNA sequencing. Mir221 and Mir222 are paralogous genes and share the common seed sequence and Mir221/222AdipoKO mice fed with HFHS chow demonstrated resistance to the development of obesity compared with Mir221/222flox/y. Ddit4 is a direct target of Mir221 and Mir222, and the upregulation of Ddit4 in Mir221/222AdipoKO was associated with the suppression of TSC2 (tuberous sclerosis complex 2)/mammalian target of rapamycin complex 1 (mTORC1)/S6K (ribosomal protein S6 kinase) pathway. The overexpression of miR-222-3p linked to enhanced adipogenesis, and it may be a potential candidate for miRNA-based therapy.


2021 ◽  
Vol 23 (1) ◽  
pp. 48
Author(s):  
Yong Weon Yi ◽  
Kyu Sic You ◽  
Jeong-Soo Park ◽  
Seok-Geun Lee ◽  
Yeon-Sun Seong

Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.


2021 ◽  
Author(s):  
Tieme A. Helderman ◽  
Laurens Deurhof ◽  
André Bertran ◽  
Manon M. S. Richard ◽  
Richard Kormelink ◽  
...  

2021 ◽  
pp. jmedgenet-2021-107866
Author(s):  
Pratul Kumar Jain ◽  
Shashank Jayappa ◽  
Thiagarajan Sairam ◽  
Anupam Mittal ◽  
Sayan Paul ◽  
...  

BackgroundHypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease with preserved or increased ejection fraction in the absence of secondary causes. Mutations in the sarcomeric protein-encoding genes predominantly cause HCM. However, relatively little is known about the genetic impact of signalling proteins on HCM.Methods and resultsHere, using exome and targeted sequencing methods, we analysed two independent cohorts comprising 401 Indian patients with HCM and 3521 Indian controls. We identified novel variants in ribosomal protein S6 kinase beta-1 (RPS6KB1 or S6K1) gene in two unrelated Indian families as a potential candidate gene for HCM. The two unrelated HCM families had the same heterozygous missense S6K1 variant (p.G47W). In a replication association study, we identified two S6K1 heterozygotes variants (p.Q49K and p.Y62H) in the UK Biobank cardiomyopathy cohort (n=190) compared with matched controls (n=16 479). These variants are neither detected in region-specific controls nor in the human population genome data. Additionally, we observed an S6K1 variant (p.P445S) in an Arab patient with HCM. Functional consequences were evaluated using representative S6K1 mutated proteins compared with wild type in cellular models. The mutated proteins activated the S6K1 and hyperphosphorylated the rpS6 and ERK1/2 signalling cascades, suggesting a gain-of-function effect.ConclusionsOur study demonstrates for the first time that the variants in the S6K1 gene are associated with HCM, and early detection of the S6K1 variant carriers can help to identify family members at risk and subsequent preventive measures. Further screening in patients with HCM with different ethnic populations will establish the specificity and frequency of S6K1 gene variants.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3545
Author(s):  
Raisa Kraaijvanger ◽  
Kees Seldenrijk ◽  
Els Beijer ◽  
Jan Damen ◽  
Jayne Louise Wilson ◽  
...  

Mechanistic target of rapamycin complex 1 (mTORC1) has been linked to different diseases. The mTORC1 signaling pathway is suggested to play a role in the granuloma formation of sarcoidosis. Recent studies demonstrated conflicting data on mTORC1 activation in patients with sarcoidosis by measuring activation of its downstream target S6 kinase (S6K) with either 33% or 100% of patients. Therefore, the aim of our study was to reevaluate the percentage of S6K activation in sarcoidosis patients in a Dutch cohort. To investigate whether this activation is specific for sarcoid granulomas, we also included Dutch patients with other granulomatous diseases of the lung. The activation of the S6K signaling pathway was evaluated by immunohistochemical staining of its downstream effector phospho-S6 in tissue sections. Active S6K signaling was detected in 32 (43%) of the sarcoidosis patients. Twelve (31%) of the patients with another granulomatous disorder also showed activated S6K signaling, demonstrating that the mTORC1 pathway may be activated in a range for different granulomatous diseases (p = 0.628). Activation of S6K can only be found in a subgroup of patients with sarcoidosis, as well as in patients with other granulomatous pulmonary diseases, such as hypersensitivity pneumonitis or vasculitis. No association between different clinical phenotypes and S6K activation can be found in sarcoidosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingjing Li ◽  
Zidan Zhu ◽  
Jingxiu Bi ◽  
Qili Feng ◽  
Brenda T. Beerntsen ◽  
...  

Bursicon is a neuropeptide belonging to the cystine knot family and is composed of burs and partner of burs (pburs) subunits. It can form heterodimers or homodimers to execute different biological functions. Bursicon heterodimers regulate cuticle sclerotization and wing maturation, whereas bursicon homodimers mediate innate immunity and midgut stem cell proliferation. A recent study has shown that bursicon potentially induces the expression of vitellogenin (Vg) in the black tiger shrimp Penaeus monodon; however, the underlying mechanism remains unknown. In this study, we investigated the role of bursicon in the reproductive physiology of the red flour beetle, Tribolium castaneum. The knockdown of burs, pburs, or its receptor T. castaneum rickets (Tcrk) in 2-day pupae significantly downregulated the expression levels of Vg1, Vg2, and Vg receptor (VgR) genes in females 3- and 5-day post-adult emergence, leading to abnormal oocytes with limited Vg content. The silencing of burs repressed the number of eggs laid and completely inhibited egg hatch, whereas the silencing of pburs dramatically decreased the number of eggs laid, hatch rate, and offspring larval size, and this RNA interference (RNAi) effects persisted to the next generation. Furthermore, the knockdown of burs or pburs downregulated the expression of the insulin/insulin-like signaling/target of rapamycin (TOR) signaling genes encoding insulin receptor (InR), protein kinase B (Akt), TOR, and ribosomal protein S6 kinase (S6K). Most importantly, the injection of recombinant pburs (r-pburs) protein was able to upregulate the expression of Vg, VgR, InR, Akt, TOR, S6K, JH synthesis (JHAMT), Methoprene-tolerant (Met), and Taiman (Tai) in normal females and rescue the expression of Vg and VgR in pburs RNAi females but failed to rescue Vg and VgR in Tcrk knockdown females. We infer that bursicon homodimers influence Vg expression via the receptor Tcrk, possibly by mediating the expression of the juvenile hormone (JH) and IIS/TOR pathway genes, thereby regulating reproduction in T. castaneum.


2021 ◽  
Author(s):  
Shahan Mamoor

In these brief notes we document work using published microarray data (1, 2) to pioneer integrative transcriptome analysis comparing vulvar carcinoma to its tissue of origin, the vulva. We report the differential expression of ribosomal protein S6 kinase A2, encoded by RPS6KA2, in cancer of the vulva. RPS6KA2 may be of pertinence to understanding transformation and disease progression in vulvar cancer (3).


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5133
Author(s):  
Stefan Gerstenecker ◽  
Lisa Haarer ◽  
Martin Schröder ◽  
Mark Kudolo ◽  
Martin P. Schwalm ◽  
...  

The ribosomal protein S6 kinase beta 2 (S6K2) is thought to play an important role in malignant cell proliferation, but is understudied compared to its closely related homolog S6 kinase beta 1 (S6K1). To better understand the biological function of S6K2, chemical probes are needed, but the high similarity between S6K2 and S6K1 makes it challenging to selectively address S6K2 with small molecules. We were able to design the first potent and highly isoform-specific S6K2 inhibitor from a known S6K1-selective inhibitor, which was merged with a covalent inhibitor engaging a cysteine located in the hinge region in the fibroblast growth factor receptor kinase (FGFR) 4 via a nucleophilic aromatic substitution (SNAr) reaction. The title compound shows a high selectivity over kinases with an equivalently positioned cysteine, as well as in a larger kinase panel. A good stability towards glutathione and Nα-acetyl lysine indicates a non-promiscuous reactivity pattern. Thus, the title compound represents an important step towards a high-quality chemical probe to study S6K2-specific signaling.


2021 ◽  
Vol 14 (10) ◽  
pp. 969
Author(s):  
Marzia Vasarri ◽  
Emanuela Barletta ◽  
Donatella Degl’Innocenti

Posidonia oceanica (L.) Delile is a marine plant traditionally used as an herbal medicine for various health disorders. P. oceanica leaf extract (POE) has been shown to be a phytocomplex with cell-safe bioactivities, including the ability to trigger autophagy. Autophagy is a key pathway to counteract non-alcoholic fatty liver disease (NAFLD) by controlling the breakdown of lipid droplets in the liver. The aim of this study was to explore the ability of POE to trigger autophagy and reduce lipid accumulation in human hepatoma (HepG2) cells and then verify the possible link between the effect of POE on lipid reduction and autophagy activation. Expression levels of autophagy markers were monitored by the Western blot technique in POE-treated HepG2 cells, whereas the extent of lipid accumulation in HepG2 cells was assessed by Oil red O staining. Chloroquine (CQ), an autophagy inhibitor, was used to study the relationship between POE-induced autophagy and intracellular lipid accumulation. POE was found to stimulate an autophagy flux over time in HepG2 cells by lowering the phosphorylation state of ribosomal protein S6, increasing Beclin-1 and LC3-II levels, and decreasing p62 levels. By blocking autophagy with CQ, the effect of POE on intracellular lipid accumulation was clearly reversed, suggesting that the POE phytocomplex may reduce lipid accumulation in HepG2 cells by activating the autophagic process. This work indicates that P. oceanica may be considered as a promising molecule supplier to discover new natural approaches for the management of NAFLD.


Sign in / Sign up

Export Citation Format

Share Document