isoleucine residue
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 1)

2020 ◽  
Vol 103 (2) ◽  
pp. 742-751 ◽  
Author(s):  
Gustaf E. Degen ◽  
Dawn Worrall ◽  
Elizabete Carmo‐Silva

2016 ◽  
Vol 60 (6) ◽  
pp. 3687-3699 ◽  
Author(s):  
Amit Kumar ◽  
Amit Kumar Tripathi ◽  
Manoj Kathuria ◽  
Sonal Shree ◽  
Jitendra Kumar Tripathi ◽  
...  

Piscidin-1 possesses significant antimicrobial and cytotoxic activities. To recognize the primary amino acid sequence(s) in piscidin-1 that could be important for its biological activity, a long heptad repeat sequence located in the region from amino acids 2 to 19 was identified. To comprehend the possible role of this motif, six analogs of piscidin-1 were designed by selectively replacing a single isoleucine residue at a d (5th) position or at an a (9th or 16th) position with either an alanine or a valine residue. Two more analogs, namely, I5F,F6A-piscidin-1 and V12I-piscidin-1, were designed for investigating the effect of interchanging an alanine residue at a d position with an adjacent phenylalanine residue and replacing a valine residue with an isoleucine residue at another d position of the heptad repeat of piscidin-1, respectively. Single alanine-substituted analogs exhibited significantly reduced cytotoxicity against mammalian cells compared with that of piscidin-1 but appreciably retained the antibacterial and antiendotoxin activities of piscidin-1. All the single valine-substituted piscidin-1 analogs and I5F,F6A-piscidin-1 showed cytotoxicity greater than that of the corresponding alanine-substituted analogs, antibacterial activity marginally greater than or similar to that of the corresponding alanine-substituted analogs, and also antiendotoxin activity superior to that of the corresponding alanine-substituted analogs. Interestingly, among these peptides, V12I-piscidin-1 showed the highest cytotoxicity and antibacterial and antiendotoxin activities. Lipopolysaccharide (12 mg/kg of body weight)-treated mice, further treated with I16A-piscidin-1, the piscidin-1 analog with the highest therapeutic index, at a single dose of 1 or 2 mg/kg of body weight, showed 80 and 100% survival, respectively. Structural and functional characterization of these peptides revealed the basis of their biological activity and demonstrated that nontoxic piscidin-1 analogs with significant antimicrobial and antiendotoxin activities can be designed by incorporating single alanine substitutions in the piscidin-1 heptad repeat.


2011 ◽  
Vol 92 (7) ◽  
pp. 1601-1606 ◽  
Author(s):  
Yukie Yamaguchi ◽  
Yoko Nukui ◽  
Shigeru Tajima ◽  
Reiko Nerome ◽  
Fumihiro Kato ◽  
...  

Our previous studies have shown that the Japanese encephalitis virus (JEV) strain Mie/40/2004 is the most virulent of the strains isolated by us in Japan from 2002 to 2004. Comparison of the amino acid sequence of Mie/40/2004 with those of low-virulence strains revealed that an isoleucine residue at position 3 of the Mie/40/2004 NS4A protein may increase viral pathogenicity. A recombinant virus with a single valine-to-isoleucine substitution (V3I) at position 3 in the low-virulence Mie/41/2002 background (rJEV-Mie41-NS4AV3I) exhibited increased virulence in mice compared with the Mie/41/2002 parent strain. The V3I mutation did not affect virus growth in several cell lines. These results demonstrate that the isoleucine at position 3 in the NS4A protein of Mie/40/2004 is responsible for its high virulence in vivo. This is the first report to show that an amino acid substitution in a flavivirus NS4A protein alters viral pathogenicity in mice.


2009 ◽  
Vol 419 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Masahiko Taura ◽  
Kei Miyano ◽  
Reiko Minakami ◽  
Sachiko Kamakura ◽  
Ryu Takeya ◽  
...  

The superoxide-producing NADPH oxidase in phagocytes is crucial for host defence; its catalytic core is the membrane-integrated protein gp91phox [also known as Nox2 (NADPH oxidase 2)], which forms a stable heterodimer with p22phox. Activation of the oxidase requires membrane translocation of the three cytosolic proteins p47phox, p67phox and the small GTPase Rac. At the membrane, these proteins assemble with the gp91phox–p22phox heterodimer and induce a conformational change of gp91phox, leading to superoxide production. p47phox translocates to membranes using its two tandemly arranged SH3 domains, which directly interact with p22phox, whereas p67phox is recruited in a p47phox-dependent manner. In the present study, we show that a short region N-terminal to the bis-SH3 domain is required for activation of the phagocyte NADPH oxidase. Alanine substitution for Ile152 in this region, a residue that is completely conserved during evolution, results in a loss of the ability to activate the oxidase; and the replacement of Thr153 also prevents oxidase activation, but to a lesser extent. In addition, the corresponding isoleucine residue (Ile155) of the p47phox homologue Noxo1 (Nox organizer 1) participates in the activation of non-phagocytic oxidases, such as Nox1 and Nox3. The I152A substitution in p47phox, however, does not affect its interaction with p22phox or with p67phox. Consistent with this, a mutant p47phox (I152A), as well as the wild-type protein, is targeted upon cell stimulation to membranes, and membrane recruitment of p67phox and Rac normally occurs in p47phox (I152A)-expressing cells. Thus the Ile152-containing region of p47phox plays a crucial role in oxidase activation, probably by functioning at a process after oxidase assembly.


2002 ◽  
Vol 184 (13) ◽  
pp. 3569-3577 ◽  
Author(s):  
Olaf Degen ◽  
Thomas Eitinger

ABSTRACT HoxN, a high-affinity, nickel-specific permease of Ralstonia eutropha H16, and NhlF, a nickel/cobalt permease of Rhodococcus rhodochrous J1, are structurally related members of the nickel/cobalt transporter (NiCoT) family. These transporters have an eight-helix structure and are characterized by highly conserved segments with polar or charged amino acid residues in transmembrane domains (TMDs) II, III, V, and VI. Two histidine residues in a Ni2+ binding motif, the signature sequence of NiCoTs, in TMD II of HoxN have been shown to be crucial for activity. Replacement of the corresponding His residues in NhlF affected both Co2+ and Ni2+ uptake, demonstrating that NhlF employs a HoxN-like mechanism for transport of the two cations. Multiple alignments of bacterial NiCoT sequences identified a striking correlation between a hydrophobic residue (Val or Phe) in TMD II and a position in the center of TMD I occupied by either an Asn (as in HoxN) or a His (as in NhlF). Introducing an isoleucine residue at the latter position strongly reduced HoxN activity and abolished NhlF activity, suggesting that a Lewis base N-donor moiety is important. The Asn-to-His exchange had no effect on HoxN, whereas the converse replacement reduced NhlF-mediated Ni2+ uptake significantly. Replacement of the entire TMD I of HoxN by the respective NhlF segment resulted in a chimera that transported Ni2+ and Co2+ with low capacity. The Val-to-Phe exchange in TMD II of HoxN led to a considerable rise in Ni2+ uptake capacity and conferred to the variant the ability to transport Co2+. NhlF activity dropped in response to the converse mutation. Our data predict that TMDs I and II in NiCoTs spatially interact to form a critical part of the selectivity filter. As seen for the V64F variant of HoxN, modification of this site can increase the velocity of transport and concomitantly reduce the specificity.


2002 ◽  
Vol 115 (8) ◽  
pp. 1635-1642 ◽  
Author(s):  
Joel B. Dacks ◽  
W. Ford Doolittle

SNAP receptors or SNARES are crucial components of the intracellular membrane system of eukaryotes. The syntaxin family of SNAREs have been shown to have roles in neurotransmission, vesicular transport, membrane fusion and even internal membrane compartment reconstruction. While syntaxins and SNAREs in general have been well characterized in mammalian and yeast models, little is known about their overall distribution across eukaryotic diversity or about the evolution of the syntaxin gene family. By combining bioinformatic,molecular biological and phylogenetic approaches, we demonstrate that various syntaxin homologs are not only present in `eukaryotic crown taxa' but across a wide range of eukaryotic lineages. The alignment of evolutionarily diverse syntaxin paralogs shows that an isoleucine residue critical to nSec1—syntaxin complex formation and the characteristic syntaxin glutamine residue are nearly universally conserved, implying a general functional importance for these residues. Other identified functional residues involved in botulism toxicity and calcium-binding-protein interactions are also compared. The presence of Golgi-related syntaxins in the intestinal parasite Giardia intestinalis provides further evidence for a cryptic Golgi in this `adictyosomal' taxon, and another likely case of secondary reduction in this parasite. The phylogeny of syntaxins shows a number of nested duplications, including a case of parallel evolution in the plasma membrane-associated syntaxins, and ancestral duplications in the other syntaxin paralogs. These speak to ancient events in the evolution of the syntaxin system and emphasize the universal role of the syntaxins in the eukaryotic intracellular compartment system.


2001 ◽  
Vol 56 (9-10) ◽  
pp. 806-809
Author(s):  
Paxton Loke ◽  
Tiow-Suan Sim

AbstractIsopenicillin N synthase (IPNS) is one of the key enzymes in the penicillin and cephalosporin biosynthetic pathway which catalyses the conversion of δ-(ʟ-α-aminoadipyl)-ʟ-cysteinyl-ᴅ-valine to isopenicillin N. The IPNS from Penicillium chrysogenum 23X-80-269-37-2, a high penicillin V-producer, was found to possess an isoleucine residue instead of tyrosine at position 195. An attempt to increase the specific activity of IPNS from Cephalosporium acremonium and Streptomyces clavuligerus was undertaken by altering the corresponding tyrosine residue to an isoleucine at the corresponding location. Unfortunately, no apparent increase in specific activity was encountered when the purified mutant enzymes were analysed and thus, this amino acid difference is likely not responsible for high specific activity in IPNS.


Sign in / Sign up

Export Citation Format

Share Document