scholarly journals The Nonmuscle Myosin Regulatory Light Chain Gene mlc-4 Is Required for Cytokinesis, Anterior-Posterior Polarity, and Body Morphology during Caenorhabditis elegans Embryogenesis

1999 ◽  
Vol 146 (2) ◽  
pp. 439-451 ◽  
Author(s):  
Christopher A. Shelton ◽  
J. Clayton Carter ◽  
Gregory C. Ellis ◽  
Bruce Bowerman

Using RNA-mediated genetic interference in a phenotypic screen, we identified a conserved nonmuscle myosin II regulatory light chain gene in Caenorhabditis elegans, which we name mlc-4. Maternally supplied mlc-4 function is required for cytokinesis during both meiosis and mitosis and for establishment of anterior-posterior (a-p) asymmetries after fertilization. Reducing the function of mlc-4 or nmy-2, a nonmuscle myosin II gene, also leads to a loss of polarized cytoplasmic flow in the C. elegans zygote, supporting models in which cytoplasmic flow may be required to establish a-p differences. Germline P granule localization at the time of cytoplasmic flow is also lost in these embryos, although P granules do become localized to the posterior pole after the first mitosis. This result suggests that a mechanism other than cytoplasmic flow or mlc-4/nmy-2 activity can generate some a-p asymmetries in the C. elegans zygote. By isolating a deletion allele, we show that removing zygotic mlc-4 function results in an elongation phenotype during embryogenesis. An mlc-4/green fluorescent protein transgene is expressed in lateral rows of hypodermal cells and these cells fail to properly change shape in mlc-4 mutant animals during elongation.

2016 ◽  
Vol 291 (48) ◽  
pp. 24828-24837 ◽  
Author(s):  
Xiong Liu ◽  
Shi Shu ◽  
Neil Billington ◽  
Chad D. Williamson ◽  
Shuhua Yu ◽  
...  

2021 ◽  
Author(s):  
Kai Weissenbruch ◽  
Magdalena Fladung ◽  
Justin Grewe ◽  
Laurent Baulesch ◽  
Ulrich Sebastian Schwarz ◽  
...  

Nonmuscle myosin II minifilaments have emerged as central elements for force generation and mechanosensing by mammalian cells. Each minifilament can have a different composition and activity due to the existence of the three nonmuscle myosin II isoforms A, B and C and their respective phosphorylation pattern. We have used CRISPR/Cas9-based knockout cells, quantitative image analysis and mathematical modelling to dissect the dynamic processes that control the formation and activity of heterotypic minifilaments and found a strong asymmetry between isoforms A and B. Loss of NM IIA completely abrogates regulatory light chain phosphorylation and reduces the level of assembled NM IIB. Activated NM IIB preferentially co-assembles into pre-formed NM IIA minifilaments and stabilizes the filament in a force-dependent mechanism. NM IIC is only weakly coupled to these processes. We conclude that NM IIA and B play clearly defined complementary roles during assembly of functional minifilaments. NM IIA is responsible for the formation of nascent pioneer minifilaments. NM IIB incorporates into these and acts as a clutch that limits the force output to prevent excessive NM IIA activity. Together these two isoforms form a balanced system for regulated force generation.


2017 ◽  
Vol 114 (32) ◽  
pp. E6516-E6525 ◽  
Author(s):  
Xiong Liu ◽  
Neil Billington ◽  
Shi Shu ◽  
Shu-Hua Yu ◽  
Grzegorz Piszczek ◽  
...  

Addition of 1 mM ATP substantially reduces the light scattering of solutions of polymerized unphosphorylated nonmuscle myosin IIs (NM2s), and this is reversed by phosphorylation of the regulatory light chain (RLC). It has been proposed that these changes result from substantial depolymerization of unphosphorylated NM2 filaments to monomers upon addition of ATP, and filament repolymerization upon RLC-phosphorylation. We now show that the differences in myosin monomer concentration of RLC-unphosphorylated and -phosphorylated recombinant mammalian NM2A, NM2B, and NM2C polymerized in the presence of ATP are much too small to explain their substantial differences in light scattering. Rather, we find that the decrease in light scattering upon addition of ATP to polymerized unphosphorylated NM2s correlates with the formation of dimers, tetramers, and hexamers, in addition to monomers, an increase in length, and decrease in width of the bare zones of RLC-unphosphorylated filaments. Both effects of ATP addition are reversed by phosphorylation of the RLC. Our data also suggest that, contrary to previous models, assembly of RLC-phosphorylated NM2s at physiological ionic strength proceeds from folded monomers to folded antiparallel dimers, tetramers, and hexamers that unfold and polymerize into antiparallel filaments. This model could explain the dynamic relocalization of NM2 filaments in vivo by dephosphorylation of RLC-phosphorylated filaments, disassembly of the dephosphorylated filaments to folded monomers, dimers, and small oligomers, followed by diffusion of these species, and reassembly of filaments at the new location following rephosphorylation of the RLC.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Provas Das ◽  
Shekhar Saha ◽  
Sunandini Chandra ◽  
Alakesh Das ◽  
Sumit K. Dey ◽  
...  

2003 ◽  
Vol 14 (2) ◽  
pp. 445-459 ◽  
Author(s):  
Juan M. Durán ◽  
Ferran Valderrama ◽  
Susana Castel ◽  
Juana Magdalena ◽  
Mónica Tomás ◽  
...  

We have previously reported that actin filaments are involved in protein transport from the Golgi complex to the endoplasmic reticulum. Herein, we examined whether myosin motors or actin comets mediate this transport. To address this issue we have used, on one hand, a combination of specific inhibitors such as 2,3-butanedione monoxime (BDM) and 1-[5-isoquinoline sulfonyl]-2-methyl piperazine (ML7), which inhibit myosin and the phosphorylation of myosin II by the myosin light chain kinase, respectively; and a mutant of the nonmuscle myosin II regulatory light chain, which cannot be phosphorylated (MRLC2AA). On the other hand, actin comet tails were induced by the overexpression of phosphatidylinositol phosphate 5-kinase. Cells treated with BDM/ML7 or those that express the MRLC2AA mutant revealed a significant reduction in the brefeldin A (BFA)-induced fusion of Golgi enzymes with the endoplasmic reticulum (ER). This delay was not caused by an alteration in the formation of the BFA-induced tubules from the Golgi complex. In addition, the Shiga toxin fragment B transport from the Golgi complex to the ER was also altered. This impairment in the retrograde protein transport was not due to depletion of intracellular calcium stores or to the activation of Rho kinase. Neither the reassembly of the Golgi complex after BFA removal nor VSV-G transport from ER to the Golgi was altered in cells treated with BDM/ML7 or expressing MRLC2AA. Finally, transport carriers containing Shiga toxin did not move into the cytosol at the tips of comet tails of polymerizing actin. Collectively, the results indicate that 1) myosin motors move to transport carriers from the Golgi complex to the ER along actin filaments; 2) nonmuscle myosin II mediates in this process; and 3) actin comets are not involved in retrograde transport.


1995 ◽  
Vol 16 (5) ◽  
pp. 491-498 ◽  
Author(s):  
Kevin A. Edwards ◽  
Xiao-Jia Chang ◽  
Daniel P. Kiehart

1993 ◽  
Vol 13 (2) ◽  
pp. 902-910 ◽  
Author(s):  
A M Rushforth ◽  
B Saari ◽  
P Anderson

We used the polymerase chain reaction to detect insertions of the transposon Tc1 into mlc-2, one of two Caenorhabditis elegans regulatory myosin light chain genes. Our goals were to develop a general method to identify mutations in any sequenced gene and to establish the phenotype of mlc-2 loss-of-function mutants. The sensitivity of the polymerase chain reaction allowed us to identify nematode populations containing rare Tc1 insertions into mcl-2. mlc-2::Tc1 mutants were subsequently isolated from these populations by a sib selection procedure. We isolated three mutants with Tc1 insertions within the mlc-2 third exon and a fourth strain with Tc1 inserted in nearby noncoding DNA. To demonstrate the generality of our procedure, we isolated two additional mutants with Tc1 insertions within hlh-1, the C. elegans MyoD homolog. All of these mutants are essentially wild type when homozygous. Despite the fact that certain of these mutants have Tc1 inserted within exons of the target gene, these mutations may not be true null alleles. All three of the mlc-2 mutants contain mlc-2 mRNA in which all or part of Tc1 is spliced from the pre-mRNA, leaving small in-frame insertions or deletions in the mature message. There is a remarkable plasticity in the sites used to splice Tc1 from these mlc-2 pre-mRNAs; certain splice sites used in the mutants are very different from typical eukaryotic splice sites.


Sign in / Sign up

Export Citation Format

Share Document