myosin regulatory light chain
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 26)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Daisuke Kobayashi ◽  
Kazuhiko Matsuo ◽  
Tetsuaki Kimura ◽  
Satoshi Ansai ◽  
Hayato Yokoi ◽  
...  

AbstractBackgroundIntestinal atresia (IA) is a congenital gut obstruction caused by the absence of gut opening. Genetic factors are assumed to be critical for the development of IA, in addition to accidental vascular insufficiency or mechanical strangulation. However, the molecular mechanism underlying IA remains poorly understood.ResultsIn this study, to better understand such a mechanism, we isolated a mutant of Oryzias latipes (the Japanese rice fish known as medaka) generated by N-ethyl-N-nitrosourea mutagenesis, in which IA develops during embryogenesis. Positional cloning identified a nonsense mutation in the myosin phosphatase target subunit 1 (mypt1) gene. Consistent with known Mypt1 function, the active form of myosin regulatory light chain (MRLC), which is essential for actomyosin contraction, and F-actin were ectopically accumulated in the intestinal epithelium of mutant embryos, whereas cell motility, proliferation and cell death were not substantially affected. Corresponding to the accumulation site of F-actin/active MRLC, the intestinal epithelium architecture was disordered. Importantly, blebbistatin, a non-muscle myosin inhibitor, attenuated the development of IA in the mutant.ConclusionsCytoskeletal contraction governed by mypt1 regulates the integrity of the embryonic intestinal epithelium. This study provides new insight into our understanding of the mechanism of IA development in humans.Bullet PointsMedaka mypt1 mutants display intestinal atresia.The level of phosphorylated myosin regulatory light chain was higher in mypt1 mutant embryos than in wild-type embryos.The levels of F-actin appeared elevated in the intestinal epithelium of mypt1 mutants.Blebbistatin, an inhibitor of non-muscle myosin II, rescued intestinal atresia in mypt1 mutant embryos.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4282
Author(s):  
Mary F. O’Leary ◽  
Sarah R. Jackman ◽  
Vlad R. Sabou ◽  
Matthew I. Campbell ◽  
Jonathan C. Y. Tang ◽  
...  

Shatavari has long been used as an Ayurvedic herb for women’s health, but empirical evidence for its effectiveness has been lacking. Shatavari contains phytoestrogenic compounds that bind to the estradiol receptor. Postmenopausal estradiol deficiency contributes to sarcopenia and osteoporosis. In a randomised double-blind trial, 20 postmenopausal women (68.5 ± 6 years) ingested either placebo (N = 10) or shatavari (N = 10; 1000 mg/d, equivalent to 26,500 mg/d fresh weight shatavari) for 6 weeks. Handgrip and knee extensor strength were measured at baseline and at 6 weeks. Vastus lateralis (VL) biopsy samples were obtained. Data are presented as difference scores (Week 6—baseline, median ± interquartile range). Handgrip (but not knee extensor) strength was improved by shatavari supplementation (shatavari +0.7 ± 1.1 kg, placebo −0.4 ± 1.3 kg; p = 0.04). Myosin regulatory light chain phosphorylation, a known marker of improved myosin contractile function, was increased in VL following shatavari supplementation (immunoblotting; placebo −0.08 ± 0.5 a.u., shatavari +0.3 ± 1 arbitrary units (a.u.); p = 0.03). Shatavari increased the phosphorylation of Aktser473 (Aktser473 (placebo −0.6 ± 0.6 a.u., shatavari +0.2 ± 1.3 a.u; p = 0.03) in VL. Shatavari supplementation did not alter plasma markers of bone turnover (P1NP, β-CTX) and stimulation of human osteoblasts with pooled sera (N = 8 per condition) from placebo and shatavari supplementation conditions did not alter cytokine or metabolic markers of osteoblast activity. Shatavari may improve muscle function and contractility via myosin conformational change and further investigation of its utility in conserving and enhancing musculoskeletal function, in larger and more diverse cohorts, is warranted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amalia Hadjitheodorou ◽  
George R. R. Bell ◽  
Felix Ellett ◽  
Shashank Shastry ◽  
Daniel Irimia ◽  
...  

AbstractTo migrate efficiently to target locations, cells must integrate receptor inputs while maintaining polarity: a distinct front that leads and a rear that follows. Here we investigate what is necessary to overwrite pre-existing front-rear polarity in neutrophil-like HL60 cells migrating inside straight microfluidic channels. Using subcellular optogenetic receptor activation, we show that receptor inputs can reorient weakly polarized cells, but the rear of strongly polarized cells is refractory to new inputs. Transient stimulation reveals a multi-step repolarization process, confirming that cell rear sensitivity to receptor input is the primary determinant of large-scale directional reversal. We demonstrate that the RhoA/ROCK/myosin II pathway limits the ability of receptor inputs to signal to Cdc42 and reorient migrating neutrophils. We discover that by tuning the phosphorylation of myosin regulatory light chain we can modulate the activity and localization of myosin II and thus the amenability of the cell rear to ‘listen’ to receptor inputs and respond to directional reprogramming.


2021 ◽  
Author(s):  
Mary F. O’Leary ◽  
Sarah R. Jackman ◽  
Vlad R. Sabou ◽  
Matthew I Campbell ◽  
Jonathan C. Y. Tang ◽  
...  

AbstractBackgroundShatavari has long been used as an Ayurvedic herb for women’s health, but empirical evidence for its effectiveness has been lacking. Shatavari contains phytoestrogenic compounds that bind to the estradiol receptor, and may therefore benefit postmenopausal women since postmenopausal estradiol deficiency contributes to sarcopenia and osteoporosis.MethodsIn a randomised double-blind trial, 20 postmenopausal women (68.5 ± 6 y) ingested either placebo (N=10) or shatavari (N=10; 1000 mg/d, equivalent to 26,500 mg/d fresh weight shatavari) for 6 weeks. Handgrip and knee extensor strength were measured at baseline and at 6 weeks. Vastus lateralis (VL) biopsy samples were obtained. Data are presented and analysed (t test/Mann Whitney U) as difference scores (Week 6 – baseline, median ± interquartile range).ResultsHandgrip, (but not knee extensor) strength was improved by shatavari supplementation (shatavari +0.7 ± 1.1 kg, placebo -0.4 ± 1.3 kg; p=0.04). Myosin regulatory light chain phosphorylation, a known marker of improved myosin contractile function, was increased in VL following shatavari supplementation (immunoblotting; placebo -0.08 ± 0.5 a.u. shatavari +0.3 ± 1 arbitrary units (a.u.); p=0.03). Shatavari increased phosphorylation of Aktser473 (Aktser473 (placebo -0.6 ± 0.6 a.u. shatavari +0.2 ± 1.3 a.u; p=0.03) in VL. Shatavari supplementation did not alter plasma markers of bone turnover (P1NP, β-CTX) and stimulation of human osteoblasts with pooled sera (N=8 per condition) from placebo and shatavari supplementation conditions did not alter cytokine or metabolic markers of osteoblast activity.ConclusionsShatavari may improve muscle function and contractility via myosin conformational change and warrants further investigation of its utility in conserving musculoskeletal function in postmenopausal women.Trial RegistrationRetrospectively registered at clinicaltrials.gov as NCT05025917 on 30/08/21.


2021 ◽  
Vol 153 (7) ◽  
Author(s):  
Yoel H. Sitbon ◽  
Francisca Diaz ◽  
Katarzyna Kazmierczak ◽  
Jingsheng Liang ◽  
Medhi Wangpaichitr ◽  
...  

In this study, we assessed the super relaxed (SRX) state of myosin and sarcomeric protein phosphorylation in two pathological models of cardiomyopathy and in a near-physiological model of cardiac hypertrophy. The cardiomyopathy models differ in disease progression and severity and express the hypertrophic (HCM-A57G) or restrictive (RCM-E143K) mutations in the human ventricular myosin essential light chain (ELC), which is encoded by the MYL3 gene. Their effects were compared with near-physiological heart remodeling, represented by the N-terminally truncated ELC (Δ43 ELC mice), and with nonmutated human ventricular WT-ELC mice. The HCM-A57G and RCM-E143K mutations had antagonistic effects on the ATP-dependent myosin energetic states, with HCM-A57G cross-bridges fostering the disordered relaxed (DRX) state and the RCM-E143K model favoring the energy-conserving SRX state. The HCM-A57G model promoted the switch from the SRX to DRX state and showed an ∼40% increase in myosin regulatory light chain (RLC) phosphorylation compared with the RLC of normal WT-ELC myocardium. On the contrary, the RCM-E143K–associated stabilization of the SRX state was accompanied by an approximately twofold lower level of myosin RLC phosphorylation compared with the RLC of WT-ELC. Upregulation of RLC phosphorylation was also observed in Δ43 versus WT-ELC hearts, and the Δ43 myosin favored the energy-saving SRX conformation. The two disease variants also differently affected the duration of force transients, with shorter (HCM-A57G) or longer (RCM-E143K) transients measured in electrically stimulated papillary muscles from these pathological models, while no changes were displayed by Δ43 fibers. We propose that the N terminus of ELC (N-ELC), which is missing in the hearts of Δ43 mice, works as an energetic switch promoting the SRX-to-DRX transition and contributing to the regulation of myosin RLC phosphorylation in full-length ELC mice by facilitating or sterically blocking RLC phosphorylation in HCM-A57G and RCM-E143K hearts, respectively.


Author(s):  
Amalia Hadjitheodorou ◽  
George R. R. Bell ◽  
Felix Ellett ◽  
Shashank Shastry ◽  
Daniel Irimia ◽  
...  

ABSTRACTTo migrate efficiently to target locations, cells must integrate receptor inputs while maintaining polarity: a distinct front that leads and a rear that follows. Here we investigate what is necessary to overwrite pre-existing front/rear polarity in neutrophil-like HL60 cells migrating inside straight microfluidic channels. Using subcellular optogenetic receptor activation, we show that receptor inputs can reorient weakly polarized cells, but the rear of strongly polarized cells is refractory to new inputs. Transient stimulation reveals a multi-step repolarization process, confirming that cell rear sensitivity to receptor input is the primary determinant of large-scale directional reversal. We demonstrate that the RhoA/ROCK/myosin II pathway limits the ability of receptor inputs to signal to Cdc42 and reorient migrating neutrophils. We discover that by tuning the phosphorylation of myosin regulatory light chain we can modulate the activity and localization of myosin II and thus the amenability of the cell rear to ‘listen’ to receptor inputs and respond to directional reprogramming.


2021 ◽  
pp. 129655
Author(s):  
Lichuang Cao ◽  
Zhenyu Wang ◽  
Dequan Zhang ◽  
Xin Li ◽  
Chengli Hou ◽  
...  

Cytoskeleton ◽  
2021 ◽  
Author(s):  
Ivan Ramirez ◽  
Ankur A. Gholkar ◽  
Erick F. Velasquez ◽  
Xiao Guo ◽  
Bobby Tofig ◽  
...  

2021 ◽  
Vol 120 (3) ◽  
pp. 251a-252a
Author(s):  
So-Jin Park-Holohan ◽  
Elisabetta Brunello ◽  
Thomas Kampourakis ◽  
Martin Rees ◽  
Malcolm Irving ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document