scholarly journals Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo

2007 ◽  
Vol 176 (3) ◽  
pp. 329-341 ◽  
Author(s):  
Tomomi Oyama ◽  
Toshio Nagai ◽  
Hiroshi Wada ◽  
Atsuhiko Thomas Naito ◽  
Katsuhisa Matsuura ◽  
...  

Side population (SP) cells, which can be identified by their ability to exclude Hoechst 33342 dye, are one of the candidates for somatic stem cells. Although bone marrow SP cells are known to be long-term repopulating hematopoietic stem cells, there is little information about the characteristics of cardiac SP cells (CSPs). When cultured CSPs from neonatal rat hearts were treated with oxytocin or trichostatin A, some CSPs expressed cardiac-specific genes and proteins and showed spontaneous beating. When green fluorescent protein–positive CSPs were intravenously infused into adult rats, many more (∼12-fold) CSPs were migrated and homed in injured heart than in normal heart. CSPs in injured heart differentiated into cardiomyocytes, endothelial cells, or smooth muscle cells (4.4%, 6.7%, and 29% of total CSP-derived cells, respectively). These results suggest that CSPs are intrinsic cardiac stem cells and involved in the regeneration of diseased hearts.

2020 ◽  
Author(s):  
Yanan Kong ◽  
Liuhanghang Cheng ◽  
Min Xuan ◽  
Hao Ding ◽  
Biao Cheng

Abstract Background Hematopoietic stem cells(HSCs) and mesenchymal stem cells(MSCs) can participate in wound healing. However, very few studies had shown HSCs and MSCs could arrive to the wound and differentiate into tissues. In this study, we intend to investigate the role of bone marrow HSCs and MSCs in wound healing. Methods We first removed the bone marrow of mice by irradiation. Furthermore, we injected different colours of fluorescent HSCs and MSCs into the tail vein of irradiated mice to reconstruct bone marrow function. We prepared wound models on the back of these mice. In vivo imaging and immunohistochemical staining were used to track the expression of fluorescent protein. Results HSCs and MSCs have been isolated and cultured. HSCs expressed expressed Sca1, not lineage, CD34 or CD48. MSCs expressed expressed CD29 and CD44,not CD34 or CD45. HSCs labeled with green fluorescent protein reached the wound and co-expressed with desmin and α-SMA. MSCs didn’t stay on the wound. Conclusions The results show HSCs in the bone marrow of mice can directly participate in wound healing and differentiate into pericytes and myofibroblasts.


2019 ◽  
Vol 208 (3-4) ◽  
pp. 148-157
Author(s):  
Tao Luo ◽  
Xueqin Yang ◽  
Yan Sun ◽  
Xinqi Huang ◽  
Ling Zou ◽  
...  

Osteogenic differentiation of human adipose tissue-derived stem cells (hASCs) is a complex process that is regulated by multiple factors, including microRNAs (miRNAs). The miRNA miR-20a was shown to promote bone formation from bone marrow-derived mesenchymal stem cells. However, the role of miR-20a in osteogenic differentiation of hASCs remains unclear. In this study, we systematically evaluated the function of miR-20a in regulating hASC osteogenesis in vitro. hASCs were transduced with miR-20a-overexpressing and miR-20a-sponge lentiviral vectors, with green fluorescent protein (GFP) as a control. The results showed that miR-20a transcription was upregulated after hASC mineralization. Compared with the miR-20a-sponge, GFP, and hASC groups, the miR-20a-overexpressing group showed higher alkaline phosphatase (ALP) activity on days 7 and 14. Moreover, the mRNA level of ALP increased significantly in the miR-20a-overexpressing group on day 14. Furthermore, the protein of the target gene PPARγ was decreased, and the osteogenic differentiation-associated proteins ALP, osteocalcin, and RUNX2 were upregulated. hASCs anchored to HA/β-TCP revealed a healthy polygonal morphology and developed cytoplasmic extensions. miR-20a promoted osteogenic differentiation of the cell scaffold. Taken together, these data ­confirm that miRNA-20a promotes the osteogenesis of hASCs in vitro, and its essential role in vivo needs further ­investigation.


2019 ◽  
Vol 19 (4) ◽  
pp. 248-254
Author(s):  
Marianne Lehmann ◽  
Martina Canatelli-Mallat ◽  
Priscila Chiavellini ◽  
Gloria M. Cónsole ◽  
Maria D. Gallardo ◽  
...  

Background: Conventional cell reprogramming involves converting a somatic cell line into induced pluripotent stem cells (iPSC), which subsequently can be re-differentiated to specific somatic cell types. Alternatively, partial cell reprogramming converts somatic cells into other somatic cell types by transient expression of pluripotency genes thus generating intermediates that retain their original cell identity, but are responsive to appropriate cocktails of specific differentiation factors. Additionally, biological rejuvenation by partial cell reprogramming is an emerging avenue of research. Objective: Here, we will briefly review the emerging information pointing to partial reprogramming as a suitable strategy to achieve cell reprogramming and rejuvenation, bypassing cell dedifferentiation. Methods: In this context, regulatable pluripotency gene expression systems are the most widely used at present to implement partial cell reprogramming. For instance, we have constructed a regulatable bidirectional adenovector expressing Green Fluorescent Protein and oct4, sox2, klf4 and c-myc genes (known as the Yamanaka genes or OSKM). Results: Partial cell reprogramming has been used to reprogram fibroblasts to cardiomyocytes, neural progenitors and neural stem cells. Rejuvenation by cyclic partial reprogramming has been achieved both in vivo and in cell culture using transgenic mice and cells expressing the OSKM genes, respectively, controlled by a regulatable promoter. Conclusion: Partial reprogramming emerges as a powerful tool for the genesis of iPSC-free induced somatic cells of therapeutic value and for the implementation of in vitro and in vivo rejuvenation keeping cell type identity unchanged.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4487-4495 ◽  
Author(s):  
Naoyuki Uchida ◽  
Brad Dykstra ◽  
Kristin Lyons ◽  
Frank Leung ◽  
Merete Kristiansen ◽  
...  

Abstract Primitive hematopoietic cells from several species are known to efflux both Hoechst 33342 and Rhodamine-123. We now show that murine hematopoietic stem cells (HSCs) defined by long-term multilineage repopulation assays efflux both dyes variably according to their developmental or activation status. In day 14.5 murine fetal liver, very few HSCs efflux Hoechst 33342 efficiently, and they are thus not detected as “side population” (SP) cells. HSCs in mouse fetal liver also fail to efflux Rhodamine-123. Both of these features are retained by most of the HSCs present until 4 weeks after birth but are reversed by 8 weeks of age or after a new HSC population is regenerated in adult mice that receive transplants with murine fetal liver cells. Activation of adult HSCs in vivo following 5-fluorouracil treatment, or in vitro with cytokines, induces variable losses in Rhodamine-123 and Hoechst 33342 efflux activities, and HSCs from mdr-1a/1b-/- mice show a dramatic decrease in Rhodamine-123 efflux ability. Thus, the Rhodamine-123 and Hoechst 33342 efflux properties of murine HSCs fluctuate in the same fashion as a number of other HSC markers, suggesting these are regulated by a common control mechanism that operates independently of that regulating the regenerative function of HSCs. (Blood. 2004;103:4487-4495)


Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4064-4076 ◽  
Author(s):  
Sonia Rodriguez ◽  
Angelo Chora ◽  
Boyan Goumnerov ◽  
Christen Mumaw ◽  
W. Scott Goebel ◽  
...  

AbstractSevere sepsis is one of the leading causes of death worldwide. High mortality rates in sepsis are frequently associated with neutropenia. Despite the central role of neutrophils in innate immunity, the mechanisms causing neutropenia during sepsis remain elusive. Here, we show that neutropenia is caused in part by apoptosis and is sustained by a block of hematopoietic stem cell (HSC) differentiation. Using a sepsis murine model, we found that the human opportunistic bacterial pathogen Pseudomonas aeruginosa caused neutrophil depletion and expansion of the HSC pool in the bone marrow. “Septic” HSCs were significantly impaired in competitive repopulation assays and defective in generating common myeloid progenitors and granulocyte-monocyte progenitors, resulting in lower rates of myeloid differentiation in vitro and in vivo. Delayed myeloid-neutrophil differentiation was further mapped using a lysozyme–green fluorescent protein (GFP) reporter mouse. Pseudomonas's lipopolysaccharide was necessary and sufficient to induce myelosuppresion and required intact TLR4 signaling. Our results establish a previously unrecognized link between HSC regulation and host response in severe sepsis and demonstrate a novel role for TLR4.


2021 ◽  
Author(s):  
Yosuke Tanaka ◽  
Yasushi Kubota ◽  
Ivo Lieberam ◽  
Jillian L. Barlow ◽  
Josh W. Bramley ◽  
...  

AbstractNumerous strategies exist to isolate hematopoietic stem cells (HSCs) using complex combinations of markers and flow cytometry. However, robust identification of HSCs using imaging techniques is substantially more challenging which has prompted the recent development of HSC reporter mice. To date, none of the molecules used in these reporters have been useful for human HSC identification. Here we report that PLXDC2 is a useful marker for both mouse and human HSCs. Using a green fluorescent protein (GFP) knock-in at the Plxdc2 locus in mice (hereafter denoted as Plxdc2-GFP), we showed that Plxdc2-GFP is highly expressed in HSCs with 1 in 2.8 Plxdc2-GFP+CD150+ cells giving long-term multi-lineage reconstitution in transplantation. Moreover, we developed a novel human PLXDC2 antibody and showed that human PLXDC2+ HSCs have stronger long-term multilineage reconstitution ability compared with PLXDC2- HSCs in a xenograft model. Thus, our study identifies PLXDC2 as a highly relevant molecule in HSC identification, potentially allowing greater purity and live in vivo tracking of these cells.SummaryTo date, few molecules are available for isolation of HSCs across species. The present study shows that PLXDC2 is a highly useful molecule for isolation of HSCs, which works across mouse and human.


2005 ◽  
Vol 14 (6) ◽  
pp. 339-351 ◽  
Author(s):  
R. Stewart ◽  
M. Lako ◽  
G. M. Horrocks ◽  
S. A. Przyborski

For many years, researchers have investigated the fate and potential of neuroectodermal cells during the development of the central nervous system. Although several key factors that regulate neural differentiation have been identified, much remains unknown about the molecular mechanisms that control the fate and specification of neural subtypes, especially in humans. Human embryonal carcinoma (EC) stem cells are valuable research tools for the study of neural development; however, existing in vitro experiments are limited to inducing the differentiation of EC cells into only a handful of cell types. In this study, we developed and characterized a novel EC cell line (termed TERA2.cl.SP12-GFP) that carries the reporter molecule, green fluorescent protein (GFP). We demonstrate that TERA2.cl.SP12-GFP stem cells and their differentiated neural derivatives constitutively express GFP in cells grown both in vitro and in vivo. Cellular differentiation does not appear to be affected by insertion of the transgene. We propose that TERA2.cl.SP12-GFP cells provide a valuable research tool to track the fate of cells subsequent to transplantation into alternative environments and that this approach may be particularly useful to investigate the differentiation of human neural tissues in response to local environmental signals.


2007 ◽  
Vol 204 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Marta Serafini ◽  
Scott J. Dylla ◽  
Masayuki Oki ◽  
Yves Heremans ◽  
Jakub Tolar ◽  
...  

For decades, in vitro expansion of transplantable hematopoietic stem cells (HSCs) has been an elusive goal. Here, we demonstrate that multipotent adult progenitor cells (MAPCs), isolated from green fluorescent protein (GFP)-transgenic mice and expanded in vitro for >40–80 population doublings, are capable of multilineage hematopoietic engraftment of immunodeficient mice. Among MAPC-derived GFP+CD45.2+ cells in the bone marrow of engrafted mice, HSCs were present that could radioprotect and reconstitute multilineage hematopoiesis in secondary and tertiary recipients, as well as myeloid and lymphoid hematopoietic progenitor subsets and functional GFP+ MAPC-derived lymphocytes that were functional. Although hematopoietic contribution by MAPCs was comparable to control KTLS HSCs, approximately 103-fold more MAPCs were required for efficient engraftment. Because GFP+ host-derived CD45.1+ cells were not observed, fusion is not likely to account for the generation of HSCs by MAPCs.


Stem Cells ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Jan Schindehütte ◽  
Hidefumi Fukumitsu ◽  
Patrick Collombat ◽  
Gundula Griesel ◽  
Christopher Brink ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document