scholarly journals Essential role of EBF1 in the generation and function of distinct mature B cell types

2012 ◽  
Vol 209 (4) ◽  
pp. 775-792 ◽  
Author(s):  
Bojan Vilagos ◽  
Mareike Hoffmann ◽  
Abdallah Souabni ◽  
Qiong Sun ◽  
Barbara Werner ◽  
...  

The transcription factor EBF1 is essential for lineage specification in early B cell development. In this study, we demonstrate by conditional mutagenesis that EBF1 is required for B cell commitment, pro–B cell development, and subsequent transition to the pre–B cell stage. Later in B cell development, EBF1 was essential for the generation and maintenance of several mature B cell types. Marginal zone and B-1 B cells were lost, whereas follicular (FO) and germinal center (GC) B cells were reduced in the absence of EBF1. Activation of the B cell receptor resulted in impaired intracellular signaling, proliferation and survival of EBF1-deficient FO B cells. Immune responses were severely reduced upon Ebf1 inactivation, as GCs were formed but not maintained. ChIP- and RNA-sequencing of FO B cells identified EBF1-activated genes that encode receptors, signal transducers, and transcriptional regulators implicated in B cell signaling. Notably, ectopic expression of EBF1 efficiently induced the development of B-1 cells at the expense of conventional B cells. These gain- and loss-of-function analyses uncovered novel important functions of EBF1 in controlling B cell immunity.

2005 ◽  
Vol 201 (8) ◽  
pp. 1197-1203 ◽  
Author(s):  
Kazu Kikuchi ◽  
Anne Y. Lai ◽  
Chia-Lin Hsu ◽  
Motonari Kondo

Cytokine receptor signals have been suggested to stimulate cell differentiation during hemato/lymphopoiesis. Such action, however, has not been clearly demonstrated. Here, we show that adult B cell development in IL-7−/− and IL-7Rα2/− mice is arrested at the pre–pro-B cell stage due to insufficient expression of the B cell–specific transcription factor EBF and its target genes, which form a transcription factor network in determining B lineage specification. EBF expression is restored in IL-7−/− pre–pro-B cells upon IL-7 stimulation or in IL-7Rα−/− pre–pro-B cells by activation of STAT5, a major signaling molecule downstream of the IL-7R signaling pathway. Furthermore, enforced EBF expression partially rescues B cell development in IL-7Rα−/− mice. Thus, IL-7 receptor signaling is a participant in the formation of the transcription factor network during B lymphopoiesis by up-regulating EBF, allowing stage transition from the pre–pro-B to further maturational stages.


2019 ◽  
Vol 12 (604) ◽  
pp. eaaw5573 ◽  
Author(s):  
Jocelyn R. Farmer ◽  
Hugues Allard-Chamard ◽  
Na Sun ◽  
Maimuna Ahmad ◽  
Alice Bertocchi ◽  
...  

Transitional B cells must actively undergo selection for self-tolerance before maturing into their resting follicular B cell successors. We found that metabolic quiescence was acquired at the follicular B cell stage in both humans and mice. In follicular B cells, the expression of genes involved in ribosome biogenesis, aerobic respiration, and mammalian target of rapamycin complex 1 (mTORC1) signaling was reduced when compared to that in transitional B cells. Functional metabolism studies, profiling of whole-cell metabolites, and analysis of cell surface proteins in human B cells suggested that this transition was also associated with increased extracellular adenosine salvage. Follicular B cells increased the abundance of the cell surface ectonucleotidase CD73, which coincided with adenosine 5′-monophosphate–activated protein kinase (AMPK) activation. Differentiation to the follicular B cell stage in vitro correlated with surface acquisition of CD73 on human transitional B cells and was augmented with the AMPK agonist, AICAR. Last, individuals with gain-of-function PIK3CD (PI3Kδ) mutations and increased pS6 activation exhibited a near absence of circulating follicular B cells. Together, our data suggest that mTORC1 attenuation may be necessary for human follicular B cell development. These data identify a distinct metabolic switch during human B cell development at the transitional to follicular stages, which is characterized by an induction of extracellular adenosine salvage, AMPK activation, and the acquisition of metabolic quiescence.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1788-1788
Author(s):  
Nagisa Sakurai ◽  
Manami Maeda ◽  
Sung-UK Lee ◽  
Julie Teruya-Feldstein ◽  
Takahiro Maeda

Abstract LRF (Leukemia/Lymphoma Related Factor, also known as Pokemon, FBI-1, OCZF and ZBTB7a) was originally identified as an interaction partner of the oncoprotein BCL6. LRF can act as a proto-oncogene by repressing the tumor suppressor ARF and cooperates with BCL6 in MEF (mouse embryonic fibroblasts) immortalization. It is highly expressed in human Non-Hodgkin Lymphoma (NHL) cases, in the pathogenesis of which BCL6 is known to be involved (Maeda et al. Nature 2005). Inducible inactivation of the LRF gene in mouse Hematopoietic Stem Cells (HSCs) results in complete block of early B cell development at the HSC/progenitor stages and concomitant development of double positive (DP) T cells in the bone marrow (BM) (Maeda et al. Science 2007). While these findings clearly illustrate key roles of LRF in normal and malignant B cell development, it is not fully identified as to which B cell stages LRF is required during normal B cell development. To elucidate the role of LRF in B cells in vivo, we established and characterized B cell-specific LRF conditional knockout (KO) mice. We took advantage of mb-1 Cre knock-in mice, in which Cre expression is restricted to the B cells after the ProB cell stage. B cell compartments in the BM (PreProB, ProB, PreB and immatureB) are grossly normal in LRFF/ Fmb1-Cre mice. The LRF gene was efficiently eliminated in BM CD19+ B cells revealed by quantitative real-time PCR assay. Furthermore, LRF protein was not detected in purified CD19+ B cells, but seen in CD19-non-B cells, confirming the specific inactivation of the LRF gene in B cells. Thus, despite its critical role at the HSC/progenitor stages, LRF was found to be dispensable for the survival of normal BM B cells. These findings are consistent with the fact that GSI treatment (Maeda et al. Science 2007) or Notch1 loss (Lee and Maeda, unpublished) rescues the defects in early B cell development seen in LRFF/FMx1-Cre+ mice. Notch signaling is necessary for the transitional B cells to commit to the marginal zone B cells (MZB). Inactivation of the component of the Notch pathways in mice results in no MZB development. On the contrary, deletion of the MINT/SHARP gene, a suppressor of Notch signaling, leads to increase of MZB cells and concomitant reduction of follicular B (FOB) cells, indicating that Notch induces MZB cell fate at the transitional B cell stage. Given that LRF is a potent Notch suppressor at the HSC/progenitor stages, we hypothesized that LRF opposes Notch pathway in mature B cells as well. To test this hypothesis, we characterized mature B cell development in LRFF/Fmb1-Cre mice. While transitional B cells were largely unaffected in LRFF/Fmb1-Cre mice, we observed a slight but statistically significant reduction of follicular (FO) B cells (B220+CD19+AA4.1-CD1d-CD23+) and concomitant increase of MZB cells (B220+CD19+AA4.1-CD1d+CD23-) as seen in MINT/SHARP knockout mice. Thus, LRF may also oppose Notch pathways at the branching point for the FOB vs. MZB fate decision. Finally, to determine the role of LRF in Germinal Center (GC) formation in vivo, we characterized secondary lymphoid organs of LRFF/Fmb1-Cre mice after antigen stimulation. Both spleen and Peyer’s Patches were analyzed two weeks after immunization with Chicken Gamma Globulin (NP-CGG). While a GC reaction was robustly induced in control mice upon immunization, GC formation was significantly impaired in LRFF/Fmb1-Cre mice as revealed by immuno-histochemical analysis (IHC) and FACS. Only few GC cells (B220+CD19+FAS+CD38-PNA+) were observed in spleens, and the absolute numbers of GC cells were drastically reduced in LRFF/Fmb1-Cre mice. Residual LRF-deficient GC B cells were mostly negative for CXCR4, which is predominantly expressed in proliferating centroblasts within GCs, suggesting that LRF-deficient GC B cells may have defects in cellular proliferation in response to antigen stimuli. Our data indicates that LRF plays key roles in mature B cell development in the secondary lymphoid organs, but dispensable for the maintenance of early BM B cells.


2002 ◽  
Vol 9 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Zhe-Xiong Lian ◽  
Hiroto Kita ◽  
Tomoyuki Okada ◽  
Tom Hsu ◽  
Leonard D. Shultz ◽  
...  

Reductions in populations of both Pre-B cell (Hardy fractions D) and Pro-B cells (Hardy fractions B–C) have been described in association with murine lupus. Recent studies of B cell populations, based on evaluation of B cell differentiation markers, now allow the enumeration and enrichment of other stage specific precursor cells. In this study we report detailed analysis of the ontogeny of B cell lineage subsets in New Zealand black (NZB) and control strains of mice. Our data suggest that B cell development in NZB mice is partially arrested at the fraction A Pre–Pro B cell stage. This arrest at the Pre-Pro B cell stage is secondary to prolonged lifespan and greater resistance to spontaneous apoptosis. In addition, expression of the gene encoding the critical B cell development transcription factor BSAP is reduced in the Pre–Pro B cell stage in NZB mice. This impairment may influence subsequent B cell development to later stages, and thereby accounts for the down-regulation of the B cell receptor componentIgα(mb-1). Furthermore, levels of expression of theRug2, λ5andIgβ(B29) genes are also reduced in Pre–Pro B cells of NZB mice. The decreased frequency of precursor B cells in the Pre–Pro B cell population occurs at the most primitive stage of B cell differentiation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michael Jonathan Lehrke ◽  
Michael Jeremy Shapiro ◽  
Matthew J Rajcula ◽  
Madeleine M Kennedy ◽  
Shaylene A McCue ◽  
...  

Iron-sulfur (Fe-S) clusters are cofactors essential for the activity of numerous enzymes including DNA polymerases, helicases, and glycosylases. They are synthesized in the mitochondria as Fe-S intermediates and are exported to the cytoplasm for maturation by the mitochondrial transporter ABCB7. Here, we demonstrate that ABCB7 is required for bone marrow B cell development, proliferation, and class switch recombination, but is dispensable for peripheral B cell homeostasis in mice. Conditional deletion of ABCB7 using Mb1-cre resulted in a severe block in bone marrow B cell development at the pro-B cell stage. The loss of ABCB7 did not alter expression of transcription factors required for B cell specification or commitment. While increased intracellular iron was observed in ABCB7-deficient pro-B cells, this did not lead to increased cellular or mitochondrial reactive oxygen species, ferroptosis, or apoptosis. Interestingly, loss of ABCB7 led to replication-induced DNA damage in pro-B cells, independent of VDJ recombination, and these cells had evidence of slowed DNA replication. Stimulated ABCB7-deficient splenic B cells from CD23-cre mice also had a striking loss of proliferation and a defect in class switching. Thus, ABCB7 is essential for early B cell development, proliferation, and class switch recombination.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3151-3151
Author(s):  
Jalal Taneera ◽  
Emma Smith ◽  
Mikael Sigvardsson ◽  
Emil Hansson ◽  
Urban Lindahl ◽  
...  

Abstract Notch activation has been suggested to promote T cell development at the expense of B cell commitment at the level of a common lymphoid progenitor prior to B cell commitment. Here, we explored the possibility that Notch activation might be able to switch the fate of already committed B cell progenitors towards T cell development upon Notch activation. To address this we overexpressed constitutively activated Notch-3 (N3IC) in B cell progenitors purified from transgenic mice in which human CD25 is expressed under control of the λ5 promoter. Strikingly, whereas untransduced and control transduced B220+λ5+CD3− B cell progenitors gave rise exclusively to B cells, CD4+ and CD8+ T cells but no B cells were derived from N3IC-transduced cells when transplanted into sublethally irradiated NOD-SCID mice. Gene expression profiling demonstrated that untransduced B220+ λ5+CD3− B cell progenitors expressed λ5 and CD19 but not the T cell specific genes GATA-3, lck and pTα, whereas CD3+ T cells derived from N3IC-transduced B220+λ5+CD3−cells failed to express λ5 and CD19, but were positive for GATA-3, lck and pTα expression as well as a and b T cell rearrangement. Furthermore, DJ rearrangements were detected at very low levels in CD3+ cells isolated from normal non-transduced BM, but were more abundant in the N3IC-transduced CD3+ BM cells. Noteworthy, N3IC-transduced B220+λ5+CD3−CD19+ proB cell progenitors failed to generate B as well as T cells, whereas N3IC-transduced B220+λ5+CD3−CD19− pre-proB cells produced exclusively T cells, even when evaluated at low cell numbers. In conclusion Notch activation can switch committed B cell progenitors from a B cell to a T cell fate, but this plasticity is lost at the Pro-B cell stage, upon upregulation of CD19 expression.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 376-376
Author(s):  
Veronica S. Gil ◽  
Louise M.C. Howell ◽  
Jenny Yeung ◽  
Kevin R. Petrie ◽  
Adrian Smith ◽  
...  

Abstract Reversible acetylation of lysine residues on histone tails is associated with changes to chromatin structure and plays a key role in regulation of gene expression. In this process, histone hypoacetylation is generally associated with gene silencing and pharmacological inhibition of histone deacetylases (HDACs) leads usually to activation of gene expression. Decreased histone acetylation is a hallmark of cancer cells and increased HDAC expression or their mistargetting to specific gene promoters has been associated with a variety of tumors. In the past we have identified and cloned class IIa HDAC9. The HDAC9 gene is located in chromosome 7p21, which is frequently amplified in B-cell tumours such as mantle cell lymphoma (MCL) and in B-cell non-Hodgkin’s lymphoma cell lines. Consistently, initial analysis of patient samples and/or publicly available microarray data highlighted high levels of HDAC9 expression in chronic lymphocytic leukemia, folicullar lymphoma and MCL. Within the normal lymphoid system, HDAC9 is co-expressed with BCL-6 in germinal center B-cells (∼60% of cells). HDAC9 is also expressed in marginal zone B cells and a fraction of CD38 or CD27 positive subepithelial tonsilar cells. In order to examine the role of HDAC9 in the lymphoid development and pathogenesis of lymphoid malignancies we used Ig heavy chain enhancer (Eμ), which drives gene expression from early stages of B-cell development, to ectopically express HDAC9 in transgenic mice. Hemizygous and homozygous mice expressing Flag epitope tagged human HDAC9 (fHDAC9) transgene display throughout their lifespan altered B-cell development. Immunophenotypic analysis of B-cells isolated from bone marrow (BM) revealed an absence of cells expressing the pre-B/immature-B cell markers normally associated with C-E Hardy’s fractions. In vitro functional clonogenic assays for IL-7 responsive BM-derived B-cell progenitors demonstrated an increase (∼50%) in colony numbers in the transgenic BM. Moreover, morphologic and flow cytometric analyses of the transgenic colonies, but not those derived from normal BM, revealed the presence of granulocyte/macrophage colony forming units expressing the HDAC9 transgene, suggesting a lympho-myeloid lineage switch. This correlates with the finding that extramedullary myelopoiesis occurs in a fraction of mice presenting splenomegaly (44%). Furthermore, a subgroup of homozygous Eμ-fHDAC9 mice (n=16) developed tumours (81%) at middle age, and present with enlarged lymph nodes (6%) and abnormal hematopoietic elements in peripheral blood and BM. Taken together these data suggest that HDAC9 plays a role in B-cell maturation and its ectopic expression in early B-cells leads to perturbation of normal B-cell development, possibly predisposing transgenic mice to tumorigenesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2524-2524
Author(s):  
Baohua Sun ◽  
Saradhi Mallampati ◽  
Yun Gong ◽  
Donghai Wang ◽  
M. James You ◽  
...  

Abstract Abstract 2524 Poster Board II-501 B cells constitute an integral part of the immune system. The development of mature B cells from hematopoietic stem cells is a complex process that is regulated in a hierarchical order by various proteins, particularly transcription factors. Sox4 is a SRY-related HMG box containing transcription factor and is known to be involved in B cell development. However, the role of Sox4 in various stages of B cell development has not been systematically investigated. In this study we used a conditional knockout mouse strain and studied the effect of Sox4 deletion in B lymphopoiesis in adult mice. We crossed the Sox4-floxed mice with different Cre mouse strains that were expected to delete the floxed Sox4 gene at different B cell developmental stages. These Cre strains included Vav-iCre (expressed in hematopoietic stem cell stage, starting from early embryos), MX1-Cre (expression in hematopoietic stem cells, induced by pIpC injection in adults), MB1-Cre (expressed in B cells, starting from early progenitor cells in embryos), and CD21-Cre (expressed in mature B cells). We demonstrated that deletion of Sox4 caused an arrest of B lymphopoiesis at the transition from pre-pro-B cell (fraction A) stage to pro-B cell stage (fraction B): fraction A cells are slightly reduced in number whereas fraction B and later stage cells are nearly absent. The pre-pro-B cells from the Sox4 knockout mice retain a population of AA4.1+ cells, which are considered to be developed into B cells. Deletion of Sox4 in early embryonic stage (Vav-iCre) or in adults (Mx1-Cre) results in a similar phenotype on B lymphopoiesis, except that peritoneal B1 cells appear to be affected with Vav-iCre, but not with Mx1-Cre. MB1-Cre gave rise to similar results as did Vav-iCre, but the arrest was not as dramatic as with Vav-iCre. CD21-Cre produced no significant difference in B cell phenotype. These data suggested that Sox4 is required for early B cell development at the transition from pre-pro-B cells to pro-B cells and is not required for mature B cells. We are currently investigating the transcription program of this transcription factor in B cell development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1303-1303
Author(s):  
Esther J.H. Tijchon ◽  
Liesbeth van Emst ◽  
Jørn Havinga ◽  
Jean-Pierre Rouault ◽  
Felice Tirone ◽  
...  

Abstract Abstract 1303 B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common form of cancer in children, characterized by genetic aberrations affecting master regulators of lymphoid differentiation, such as RUNX1, IKZF1, TCF3, and PAX5, as well as tumor suppressor genes that control the cell cycle, including RB1 and CDKN2A. Another gene frequently altered in BCP-ALL is BTG1, which displays highly clustered mono-allelic deletions in childhood BCP-ALL (9%) and adult ALL (6%). The frequency of BTG1 deletions is two- to three-fold higher in ETV6-RUNX1- and BCR-ABL1-positive leukemias. BTG1, and its close homologue BTG2 regulate gene expression, for instance by associating with protein arginine methyltransferase 1 (PRMT1), affecting the activity of a variety of transcription factors, including several nuclear hormone receptors and HoxB9. In addition, BTG1 and BTG2 have been implicated in regulating mRNA stability by interacting with the Ccr4-Not complex. Recent studies have also identified missense point mutations in BTG1 and BTG2 in about 20% of non-Hodgkin lymphomas, arguing that altered function of these genes contributes to B cell malignancies. To investigate a role of BTG1 and BTG2 in B cell development, we studied the phenotype of Btg1 and Btg2 single knockout (KO) and Btg1;Btg2 double KO mice. Animals deficient for either BTG1 or BTG2 displayed a mild B cell phenotype with a moderate reduction of ∼20% in the total amount of B220+ progenitor B cells in bone marrow, while splenic B cells were present at normal frequencies. More detailed analyses revealed that Btg1−/− and Btg2−/− mice both showed a partial block at the pre-pro-B cell stage (Hardy fraction A). Methylcellulose colony assays in the presence of interleukin-7 (IL-7) demonstrated 30% fewer colonies using bone marrow from Btg2−/− mice, whereas 70% fewer colonies were obtained using bone marrow derived from Btg1−/− mice. To assess whether BTG1 and BTG2 fulfill redundant functions during B cell development, we analyzed the phenotype of Btg1−/−;Btg2−/− mice. Hence we observed that the combined loss of BTG1 and BTG2 led to a much stronger block in B cell differentiation, with the majority of progenitor B cells arrested at the pre-pro-B cell stage. In the spleens of these double knockout mice we observed a roughly 50% reduction in B220+ IgM+ B cells, suggesting that these genes act to modify the activity of B lineage transcription factors rather than to fully block their activities. This is consistent with a role for these genes as modifiers of transcriptional activity. Current studies are aimed at defining the molecular targets regulated by BTG1 and BTG2 during early B cell development using RNA sequencing and protein interaction experiments. In conclusion, our data demonstrate that BTG1 and BTG2 act as important regulators of normal B cell differentiation, and that this function might be critical for their role as tumor suppressors in (early) B cell malignancies. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 19 (1) ◽  
pp. 392-401 ◽  
Author(s):  
Peter Åkerblad ◽  
Maria Rosberg ◽  
Tomas Leanderson ◽  
Mikael Sigvardsson

ABSTRACT Early B-cell factor (EBF) is a transcription factor suggested as essential for early B-lymphocyte development by findings in mice where the coding gene has been inactivated by homologous disruption. This makes the identification of genetic targets for this transcription factor pertinent for the understanding of early B-cell development. The lack of B29 transcripts, coding for the β subunit of the B-cell receptor complex, in pro-B cells from EBF-deficient mice suggested that B29 might be a genetic target for EBF. We here present data suggesting that EBF interacts with three independent sites within the mouse B29 promoter. Furthermore, ectopic expression of EBF in HeLa cells activated a B29promoter-controlled reporter construct 13-fold and induced a low level of expression from the endogenous B29 gene. Finally, mutations in the EBF binding sites diminished B29 promoter activity in pre-B cells while the same mutations did not have as striking an effect on the promoter function in B-cell lines of later differentiation stages. These data suggest that the B29gene is a genetic target for EBF in early B-cell development.


Sign in / Sign up

Export Citation Format

Share Document