scholarly journals Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer

2019 ◽  
Vol 216 (10) ◽  
pp. 2378-2393 ◽  
Author(s):  
Wenhan Zhu ◽  
Naoteru Miyata ◽  
Maria G. Winter ◽  
Alexandre Arenales ◽  
Elizabeth R. Hughes ◽  
...  

Chronic inflammation and gut microbiota dysbiosis, in particular the bloom of genotoxin-producing E. coli strains, are risk factors for the development of colorectal cancer. Here, we sought to determine whether precision editing of gut microbiota metabolism and composition could decrease the risk for tumor development in mouse models of colitis-associated colorectal cancer (CAC). Expansion of experimentally introduced E. coli strains in the azoxymethane/dextran sulfate sodium colitis model was driven by molybdoenzyme-dependent metabolic pathways. Oral administration of sodium tungstate inhibited E. coli molybdoenzymes and selectively decreased gut colonization with genotoxin-producing E. coli and other Enterobacteriaceae. Restricting the bloom of Enterobacteriaceae decreased intestinal inflammation and reduced the incidence of colonic tumors in two models of CAC, the azoxymethane/dextran sulfate sodium colitis model and azoxymethane-treated, Il10-deficient mice. We conclude that metabolic targeting of protumoral Enterobacteriaceae during chronic inflammation is a suitable strategy to prevent the development of malignancies arising from gut microbiota dysbiosis.

2021 ◽  
Vol 12 ◽  
Author(s):  
Bo Shen ◽  
Junjun Wang ◽  
Yuecheng Guo ◽  
Tianyi Gu ◽  
Zhenyang Shen ◽  
...  

Objective: Inflammatory bowel disease (IBD) is characterized by gut microbiota dysbiosis, which is also frequently observed in patients with non-alcoholic fatty liver disease. Whether gut microbiota dysbiosis in IBD patients promotes the development of non-alcoholic steatohepatitis (NASH) remains unclear. We aimed to explore the role of gut microbiota dysbiosis in the development of NASH in mice with dextran sulfate sodium salt (DSS) induced colitis.Design: Dextran sulfate sodium salt was used to induce colitis, and high fat (HF), in combination with a high-fructose diet, was used to induce NASH in C57BL/6J male mice. Mice were treated with (1%) DSS to induce colitis in cycles, and each cycle consisted of 7 days of DSS administration followed by a 10-day interval. The cycles were repeated throughout the experimental period of 19 weeks. Pathological alterations in colitis and NASH were validated by hematoxylin and eosin (H&E), oil red O, Sirius red staining, and immunofluorescence. Gut microbiota was examined by 16S rRNA sequencing, and gene expression profiles of hepatic non-parenchymal cells (NPCs) were detected by RNA sequencing.Results: Dextran sulfate sodium salt administration enhanced the disruption of the gut–vascular barrier and aggravated hepatic inflammation and fibrosis in mice with NASH. DSS-induced colitis was accompanied by gut microbiota dysbiosis, characterized by alteration in the core microbiota composition. Compared with the HF group, the abundance of p_Proteobacteria and g_Bacteroides increased, while that of f_S24-7 decreased in the DSS + HF mice. Specifically, gut microbiota dysbiosis was characterized by enrichment of lipopolysaccharide producing bacteria and decreased abundance of short-chain fatty acid-producing bacteria. Gene expression analysis of liver NPCs indicated that compared with the HF group, genes related to both inflammatory response and angiocrine signaling were altered in the DSS + HF group. The expression levels of inflammation-related and vascular development genes correlated significantly with the abundance of p_Proteobacteria, g_Bacteroides, or f_S24-7 in the gut microbiota, implying that gut microbiota dysbiosis induced by DSS might aggravate hepatic inflammation and fibrosis by altering the gene expression in NPCs.Conclusion: Dextran sulfate sodium salt-induced colitis may promote the progression of liver inflammation and fibrosis by inducing microbiota dysbiosis, which triggers an inflammatory response and disrupts angiocrine signaling in liver NPCs. The abundance of gut microbiota was associated with expression levels of inflammation-related genes in liver NPCs and may serve as a potential marker for the progression of NASH.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuhan Zhang ◽  
Wei Liu ◽  
Di Zhang ◽  
Yanbing Yang ◽  
Xianshu Wang ◽  
...  

This study investigated the effects of foxtail millet whole grain flours obtained through different processing methods on alleviating symptoms and gut microbiota dysbiosis in a dextran sulfate sodium (DSS)-induced murine colitis model. Sixty C57BL/6 mice were divided into six groups (n = 10 in each group), including one control group (CTRL) without DSS treatment and five DSS-treated groups receiving one of the following diets: AIN-93M standard diet (93MD), whole grain foxtail millet flour (FM), fermented (F-FM), germinated (G-FM), and fermented-germinated foxtail millet flour (FG-FM). A comparison of the disease activity index (DAI) demonstrated that foxtail millet whole grain-based diets could alleviate the symptoms of enteritis to varying degrees. In addition, 16S rRNA gene sequencing revealed that FG-FM almost completely alleviated DSS-induced dysbiosis. Mice on the FG-FM diet also had the lowest plasma IL-6 levels and claudin2 expression levels in the colon, indicating reduced systemic inflammation and improved gut barrier function. This study suggested that foxtail millet whole grain is an attractive choice for the intervention of IBD and gut microbiota dysbiosis, and its prebiotic properties are highly affected by the processing methods.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao-Ming Xu ◽  
Hong-Li Huang ◽  
Yan-Di Liu ◽  
Jia-Qi Zhu ◽  
You-Lian Zhou ◽  
...  

Abstract Background Dextran sulfate sodium (DSS) replicates ulcerative colitis (UC)-like colitis in murine models. However, the microbial characteristics of DSS-triggered colitis require further clarification. To analyze the changes in gut microbiota associated with DSS-induced acute and chronic colitis. Methods Acute colitis was induced in mice by administering 3% DSS for 1 week in the drinking water, and chronic colitis was induced by supplementing drinking water with 2.5% DSS every other week for 5 weeks. Control groups received the same drinking water without DSS supplementation. The histopathological score and length of the colons, and disease activity index (DAI) were evaluated to confirm the presence of experimental colitis. Intestinal microbiota was profiled by 16S rDNA sequencing of cecal content. Results Mice with both acute and chronic DSS-triggered colitis had significantly higher DAI and colon histopathological scores in contrast to the control groups (P < 0.0001, P < 0.0001), and the colon was remarkably shortened (P < 0.0001, P < 0.0001). The gut microbiota α-diversity was partly downregulated in both acute and chronic colitis groups in contrast to their respective control groups (Pielou index P = 0.0022, P = 0.0649; Shannon index P = 0.0022, P = 0.0931). The reduction in the Pielou and Shannon indices were more obvious in mice with acute colitis (P = 0.0022, P = 0.0043). The relative abundance of Bacteroides and Turicibacter was increased (all P < 0.05), while that of Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, Rikenella, Alistipes, Alloprevotella, and Butyricicoccus was significantly decreased after acute DSS induction (all P < 0.05). The relative abundance of Bacteroides, Akkermansia, Helicobacter, Parabacteroides, Erysipelatoclostridium, Turicibacter and Romboutsia was also markedly increased (all P < 0.05), and that of Lachnospiraceae_NK4A136_group, Alistipes, Enterorhabdus, Prevotellaceae_UCG-001, Butyricicoccus, Ruminiclostridium_6, Muribaculum, Ruminococcaceae_NK4A214_group, Family_XIII_UCG-001 and Flavonifractor was significantly decreased after chronic DSS induction (all P < 0.05). Conclusion DSS-induced acute and chronic colitis demonstrated similar symptoms and histopathological changes. The changes in the gut microbiota of the acute colitis model were closer to that observed in UC. The acute colitis model had greater abundance of SCFAs-producing bacteria and lower α-diversity compared to the chronic colitis model.


2019 ◽  
Vol 317 (5) ◽  
pp. G557-G568 ◽  
Author(s):  
Rose A. Willemze ◽  
David J. Brinkman ◽  
Olaf Welting ◽  
Patricia H. P. van Hamersveld ◽  
Caroline Verseijden ◽  
...  

Clinical trials suggest that vagus nerve stimulation presents an alternative approach to classical immune suppression in Crohn's disease. T cells capable of producing acetylcholine (ChAT+ T cells) in the spleen are essential mediators of the anti-inflammatory effect of vagus nerve stimulation. Besides the spleen, ChAT+ T cells are found abundantly in Peyer’s patches of the small intestine. However, the role of ChAT+ T cells in colitis pathogenesis is unknown. Here, we made use of CD4creChATfl/fl mice (CD4ChAT−/− mice) lacking ChAT expression specifically in CD4+ T cells. Littermates (ChATfl/fl mice) served as controls. In acute dextran sulfate sodium (DSS)-induced colitis (7 days of 2% DSS in drinking water), CD4ChAT−/− mice showed attenuated colitis and lower intestinal inflammatory cytokine levels compared with ChATfl/fl mice. In contrast, in a resolution model of DSS-induced colitis (5 days of 2% DSS followed by 7 days without DSS), CD4ChAT−/− mice demonstrated a worsened colitis recovery and augmented colonic histological inflammation scores and inflammatory cytokine levels as compared with ChATfl/fl mice. In a transfer colitis model using CD4+CD45RBhigh T cells, T cells from CD4ChAT−/− mice induced a similar level of colitis compared with ChATfl/fl T cells. Together, our results indicate that ChAT+ T cells aggravate the acute innate immune response upon mucosal barrier disruption in an acute DSS-induced colitis model, whereas they are supporting the later resolution process of this innate immune-driven colitis. Surprisingly, ChAT expression in T cells seems redundant in the context of T cell-driven colitis. NEW & NOTEWORTHY By using different mouse models of experimental colitis, we provide evidence that in dextran sulfate sodium-induced colitis, ChAT+ T cells capable of producing acetylcholine worsen the acute immune response, whereas they support the later healing phase of this innate immune-driven colitis.


2021 ◽  
Vol 22 (4) ◽  
pp. 2083
Author(s):  
Hyun-Su Lee ◽  
Gil-Saeng Jeong

Colitis is a multifactorial disorder that mostly occurs in the gastrointestinal tract. Despite improvements in mucosal inflammation research, little is known regarding the small bioactive molecules that are beneficial for regulating T cells and colon cell activity. 6,7,4′-trihydroxyflavanone (THF) is a flavanone that possesses anti-osteoclastogenesis activity and exerts protective effects against methamphetamine-induced immunotoxicity. Whether THF mitigates intestinal inflammation by regulating T cells and colon cell activity remains unknown. In the present study, Jurkat and HT-29 cells were used for in vitro experiments, and dextran sulfate sodium (DSS)-induced colitis model in mice was used for in vivo experiment. We observed that THF did not have a negative effect on the viability of Jurkat and HT-29 cells. Quantitative PCR and Western blot analysis revealed that THF regulates the activity of Jurkat cells and HT-29 cells via the NFκB and MAPK pathways under stimulated conditions. In the DSS-induced colitis model, oral administration of THF attenuated the manifestations of DSS-induced colitis, including a reduction in body weight, shrinkage of the colon, and enhanced expression of pro-inflammatory cytokines in the colon and mesenteric lymph nodes. These data suggest that THF alleviates DSS-induced colitis by modulating the activity of T cells and colon cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document