On numerical solutions of a new coupled MKdV system by using the Adomian decomposition method and He's variational iteration method

2008 ◽  
Vol 78 (4) ◽  
pp. 045008 ◽  
Author(s):  
Mustafa Inc ◽  
Ebru Cavlak
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. A. Soliman

The variational iteration method and Adomian decomposition method are applied to solve the FitzHugh-Nagumo (FN) equations. The two algorithms are illustrated by studying an initial value problem. The obtained results show that only few terms are required to deduce approximated solutions which are found to be accurate and efficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
K. Maleknejad ◽  
M. Tamamgar

We reconstruct the variational iteration method that we call, parametric iteration method (PIM). The purposed method was applied for solving nonlinear Volterra integrodifferential equations (NVIDEs). The solution process is illustrated by some examples. Comparisons are made between PIM and Adomian decomposition method (ADM). Also exact solution of the 3rd example is obtained. The results show the simplicity and efficiency of PIM. Also, the convergence of this method is studied in this work.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mohamed Z. Mohamed ◽  
Tarig M. Elzaki ◽  
Mohamed S. Algolam ◽  
Eltaib M. Abd Elmohmoud ◽  
Amjad E. Hamza

The objective of this paper is to compute the new modified method of variational iteration and the Laplace Adomian decomposition method for the solution of nonlinear fractional partial differential equations. We execute a comparatively newfangled analytical mechanism that is denoted by the modified Laplace variational iteration method (MLVIM) and Laplace Adomian decomposition method (LADM). The effect of the numerical results indicates that the double approximation is handy to execute and reliable when applied. It is shown that numerical solutions are gained in the form of approximately series which are facilely computable.


Sign in / Sign up

Export Citation Format

Share Document