Previous studies, most of them experimental, reveal that the cooling effectiveness of a water drop impinging on a heated surface depends on the wall temperature, droplet shape and velocity. All previous studies focus on the behavior of a droplet falling in a quiescent environment, such as still air. Evidence in the literature also shows that gas assisted droplet sprays, in which a gas phase propels the droplets, are more efficient in heat removal than sprays consisting of droplets alone. It is conjectured that this is due to an increase in the maximum droplet spreading diameter upon impact, a thinner film, and consequently an increase in the overall heat transfer coefficient. Recent experiments in the author’s group [1, 2] show that the carrier gas jet strongly influences droplet spreading dynamics by imposing normal and shear forces on the liquid surface. The heat transfer is greatly augmented in the process, compared to a free falling droplet. To date, there has been no fundamental investigation of the physics of gas assisted spray cooling. To begin to understand the complicated process, this paper reports on a fundamental problem of a single liquid droplet that impinges on a heated surface. This paper contributes a numerical investigation of the problem using the volume of fluid (VOF) technique to capture droplet spreading dynamics and heat transfer in a single drop event. The fluid mechanics is investigated and compared to the experimental data. The greatest uncertainty in the simulation is in the specification of the contact angle of the advancing or receding liquid front, and in capturing the onset of the three-dimensional fingering phenomena.