scholarly journals Four stages of droplet spreading on a spherical substrate and in a spherical cavity: Surface tension versus line tension and viscous dissipation versus frictional dissipation

2018 ◽  
Vol 98 (6) ◽  
Author(s):  
Masao Iwamatsu
Author(s):  
C. A. Ward

A method for determining the surface tension of solid-fluid interfaces has been proposed. For a given temperature and fluid-solid combination, these surface tensions are expressed in terms of material properties that can be determined by measuring the amount of vapor adsorbed on the solid surface as a function of xV, the ratio of the vapor-phase pressure to the saturation-vapor pressure. The thermodynamic concept of pressure is shown to be in conflict with that of continuum mechanics, but is supported experimentally. This approach leads to the prediction that the contact angle, θ, can only exist in a narrow pressure range and that in this pressure range, the solid-vapor surface tension is constant and equal to the surface tension of the liquid-vapor interface, γLV. The surface tension of the solid-liquid interface, γSL, may be expressed in terms of measurable properties, γLV and θ: γSL = γLV(1 − cosθ). The value of θ is predicted to depend on both the pressure in the liquid at the three-phase, line x3L, and the three-phase line curvature, Ccl. We examine these predictions using sessile water droplets on a polished Cu surface, maintained in a closed, constant volume, isothermal container. The value of θ is found to depend on the adsorption at the solid-liquid interface, nSL = nSL(x3L,Ccl). The predicted value of θ is compared with that measured, and found to be in close agreement, but no effect of line tension is found.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 483-491 ◽  
Author(s):  
Wen-Kai Ge ◽  
Gui Lu ◽  
Xin Xu ◽  
Xiao-Dong Wang

AbstractThe spreading and permeation of droplets on porous substrates is a fundamental process in a variety of applications, such as coating, dyeing, and printing. The spreading and permeating usually occur synchronously but play different roles in the practical applications. The mechanisms of the competition between spreading and permeation is significant but still unclear. A lattice Boltzmann method is used to study the spreading and permeation of droplets on hybrid-wettability porous substrates, with different wettability on the surface and the inside pores. The competition between the spreading and the permeation processes is studied in this work from the effects of the substrate and the fluid properties, including the substrate wettability, the porous parameters, as well as the fluid surface tension and viscosity. The results show that increasing the surfacewettability and the porosity contact angle both inhibit the spreading and the permeation processes. When the inside porosity contact angle is larger than 90° (hydrophobic), the permeation process does not occur. The droplets suspend on substrates with Cassie state. The droplets are more easily to permeate into substrates with a small inside porosity contact angle (hydrophilic), as well as large pore sizes. Otherwise, the droplets are more easily to spread on substrate surfaces with small surface contact angle (hydrophilic) and smaller pore sizes. The competition between droplet spreading and permeation is also related to the fluid properties. The permeation process is enhanced by increasing of surface tension, leading to a smaller droplet lifetime. The goals of this study are to provide methods to manipulate the spreading and permeation separately, which are of practical interest in many industrial applications.


Author(s):  
R. Bezirganyan ◽  
P. Mohanty ◽  
A. Zakarian ◽  
B. Li ◽  
S. Sengupta

In this work Cellular Automata (CA) based droplet Spreading Process (SP) has been investigated. The core of the model is represented by CA based SP algorithm which implements one of the major features of fluid flow, i.e., mass conservation. We show that one input parameter (α) is sufficient for this algorithm to handle variety of droplet diameters, splat shapes, and target surfaces that the droplets impact. Further, we demonstrate constructal alternatives for viscosity and surface tension, which are scales of CA grid layers (s) and splat surface curvature (γ), respectively. We show that bigger s prevents the droplet from penetrating deep into the target surface crevices, and further variation of γ results in the desired surface tension effect. Calibration of the model is carried out using scaling relations, namely α = α(Re), where Re is the Reynolds number. Results obtained in this work showed good compliance with the experimental measurements found in the literature as well as the constructal theory of droplet impact geometry.


1992 ◽  
Vol 75 (4) ◽  
pp. 925-943 ◽  
Author(s):  
I. Szleifer ◽  
B. Widom
Keyword(s):  

2018 ◽  
Vol 197 ◽  
pp. 08016
Author(s):  
Rafil Arizona ◽  
Teguh Wibowo ◽  
Indarto Indarto ◽  
Deendarlianto Deendarlianto

The impact between multiple droplets onto hot surface is an important process in a spray cooling. The present study was conducted to investigate the dynamics of multiple droplet impact under various surface tensions. Here, the ethylene glycol with compositions of 0%, 5%, and 15% was injected through a nozzle onto stainless steel surface as the multiple droplet. The solid surface was heated at the temperatures of 100 °C, 150 °C, and 200 °C. To observe the dynamics of multiple droplets, a high speed camera with the frame rate of 2000 fps was used. A technique of image processing was developed to determine the maximum droplet spreading ratio. As the result, the surface tension contributes significantly to maximum spreading ratio. As the droplet surface tension decreases, the maximum spreading ratio increases. The maximum spreading ratio appears when the percentage of the ethylene glycol is 15% at the temperature of 150°C. From the visual observation, it is shown that a slower emergence of secondary droplets (droplet splashing) is carried out under a lower surface tension. Hence, surface tension plays an important role on the behavior of emerging secondary droplets. Furthermore, results of the experiments are useful for the validation of available previous CFD models.


Sign in / Sign up

Export Citation Format

Share Document