scholarly journals Theory of cold atoms: Bose–Einstein statistics

Laser Physics ◽  
2016 ◽  
Vol 26 (6) ◽  
pp. 062001 ◽  
Author(s):  
V I Yukalov
Keyword(s):  
2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
N. T. Zinner

We consider finite-range effects when the scattering length goes to zero near a magnetically controlled Feshbach resonance. The traditional effective-range expansion is badly behaved at this point, and we therefore introduce an effective potential that reproduces the full T-matrix. To lowest order the effective potential goes as momentum squared times a factor that is well defined as the scattering length goes to zero. The potential turns out to be proportional to the background scattering length squared times the background effective range for the resonance. We proceed to estimate the applicability and relative importance of this potential for Bose-Einstein condensates and for two-component Fermi gases where the attractive nature of the effective potential can lead to collapse above a critical particle number or induce instability toward pairing and superfluidity. For broad Feshbach resonances the higher order effect is completely negligible. However, for narrow resonances in tightly confined samples signatures might be experimentally accessible. This could be relevant for suboptical wavelength microstructured traps at the interface of cold atoms and solid-state surfaces.


2018 ◽  
Vol 61 ◽  
pp. 55-67
Author(s):  
Anne de Bouard ◽  
Arnaud Debussche ◽  
Reika Fukuizumi ◽  
Romain Poncet

The modeling of cold atoms systems has known an increasing interest in the theoretical physics community, after the first experimental realizations of Bose Einstein condensates, some twenty years ago. We here review some analytical and numerical results concerning the influence of fluctua-tions, either arising from fluctuations of the confining parameters, or due to temperature effects, in the models describing the dynamics of such condensates.


2013 ◽  
Vol 27 (06) ◽  
pp. 1330003 ◽  
Author(s):  
FEDERICA CATTANI ◽  
ARKADY KIM ◽  
MIETEK LISAK ◽  
DAN ANDERSON

A review of models describing the interactions of ultra-cold atoms and laser light is given. Both semi-classical and fully quantum models are presented with particular attention given to the introduction of local field effects. Some possible effects of self-localization and guiding, consequences of such interactions, are discussed.


2003 ◽  
Vol 3 (5) ◽  
pp. 450-464
Author(s):  
B. Lev

Many proposals for quantum information processing require precise control over the motion of neutral atoms, as in the manipulation of coherent matter waves or the confinement and localization of individual atoms. Patterns of micron-sized wires, fabricated lithographically on a flat substrate, can conveniently produce large magnetic-field gradients and curvatures to trap cold atoms and to facilitate the production of Bose-Einstein condensates. The intent of this paper is to provide the researcher who has access to a standard clean-room enough information to design and fabricate such devices.


2007 ◽  
Vol 16 (12b) ◽  
pp. 2413-2419
Author(s):  
WOLFGANG KETTERLE

In my talk at the workshop on fundamental physics in space I described the nanokelvin revolution which has taken place in atomic physics. Nanokelvin temperatures have given us access to new physical phenomena including Bose–Einstein condensation, quantum reflection, and fermionic superfluidity in a gas. They also enabled new techniques of preparing and manipulating cold atoms. At low temperatures, only very weak forces are needed to control the motion of atoms. This gave rise to the development of miniaturized setups including atom chips. In Earth-based experiments, gravitational forces are dominant unless they are compensated by optical and magnetic forces. The following text describes the work which I used to illustrate the nanokelvin revolution in atomic physics. Strongest emphasis is given to superfluidity in fermionic atoms. This is a prime example of how ultracold atoms are used to create well-controlled strongly interacting systems and obtain new insight into many-body physics.


2012 ◽  
Vol 184 ◽  
pp. 17-23
Author(s):  
Charles Elbaum

In the second half of the twentieth century and in the first decade of the twenty first century, many new phenomena came to light in the fields of condensed matter and of materials properties’ at low temperatures. A few examples of these phenomena are: the plasticity and the behavior of dislocations in solid helium-4 (a quantum solid), “high” temperature superconductivity, occurrence of superfluid flow in solid helium (“supersolid”), and, Bose-Einstein condensation of cold atoms. In this presentation descriptions and some discussions are given on the role played in these studies by ultrasonic and other forms of mechanical spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document