scholarly journals A new parton fragmentation procedurefor heavy hadron production in proton-proton collisions

Author(s):  
Antoni Szczurek
2018 ◽  
Vol 172 ◽  
pp. 05008 ◽  
Author(s):  
Edgar Dominguez-Rosas ◽  
Eleazar Cuautle Flores

Forward-backward multiplicity correlations have been used to study hadron production mechanisms in electron-positron, proton-proton and more recently in leadlead collisions. The experimental results on this correlations and its comparison to different models reveals an incomplete agreement. In this work, we present an study of forward backward multiplicity correlations in proton-proton collisions using PYTHIA event generator, at LHC energies. Detailed analysis is presented in the case of soft and hard QCD processes, incorporating color reconnection model as part of hadronization mechanism and multiple parton interactions effects in the correlations. Our results and its comparison to available experimental data suggest that this kind of correlations are great tools to characterize the events and gives the possibility to disentangle phenomena in hard and soft QCD processes.


2019 ◽  
Vol 34 (19) ◽  
pp. 1950148 ◽  
Author(s):  
M. Ajaz ◽  
Maryam

The transverse momentum spectra of [Formula: see text] mesons, protons and antiprotons produced in proton–proton collisions at 200 GeV with hadron production models are reported. Two tunes of EPOS (EPOS1.99 and EPOS-LHC), three tunes of QGSJET (QGSJETI, QGSJETII-03, QGSJETII-04), DPMJET and HIJING models are used to obtain the spectra. The results are compared with the measurements of STAR collaboration obtained at mid-rapidity of [Formula: see text] in [Formula: see text] range of [Formula: see text]. All models reproduce the ratios [Formula: see text] and [Formula: see text] at low [Formula: see text] but could not predict well at high [Formula: see text]. In addition, EPOS tunes and QGSJET tunes predict well the spectra of [Formula: see text] meson and the ratios [Formula: see text] and [Formula: see text] at low [Formula: see text]. The HIJING and the QGSJET (tune I only) could reproduce all the spectra and all the ratios at a satisfactory level of precision and were found good among the models considered in the current study at RHIC energy.


2019 ◽  
Vol 34 (13) ◽  
pp. 1950090 ◽  
Author(s):  
M. Ajaz ◽  
M. Bilal ◽  
Y. Ali ◽  
M. K. Suleymanov ◽  
K. H. Khan

The pseudorapidity [Formula: see text] dependence of charged-particles ratios in three transverse momentum [Formula: see text] regions, obtained by hadron production models, in proton–proton collisions at 7 TeV are compared with the measurements of LHCb detector. Compared to the experimental data, the [Formula: see text] ratios are independent of [Formula: see text] and [Formula: see text] and are very well predicted by all models (DPMJETIII, EPOS1.99, EPOS-LHC, HIJING1.383, QGSJETII-04 and Sibyll2.3c). All models predict the [Formula: see text] ratio at low [Formula: see text] for [Formula: see text], but underestimate afterward while reproducing the experimental data at medium and high [Formula: see text] very well. The [Formula: see text] ratio is described by the models very well at high [Formula: see text] in the low and medium [Formula: see text] region. At high [Formula: see text], models predict the experimental data well, except Sibyll2.3c that slightly overestimates. The [Formula: see text] ratio is predicted by EPOS1.99, HIJING and Sibyll at low [Formula: see text] and EPOS-LHC, EPOS1.99 and Sibyll predicted at high [Formula: see text] for low [Formula: see text]. For medium [Formula: see text], EPOS1.99 and Sibyll predict very well for [Formula: see text] while EPOS-LHC and HIJING models reproduce the data for [Formula: see text]. All models underpredict the [Formula: see text] ratio for [Formula: see text]. For the [Formula: see text] and [Formula: see text] ratios, only Sibyll and EPOS1.99 models could reproduce some regions of [Formula: see text] and [Formula: see text]. None of the models satisfactorily predict all the ratios. the same particle ratios are well described by most of the models while the discrepancies occur mostly in predicting the different particles ratios.


Author(s):  
Prabhakar Palni ◽  
Arvind Khuntia ◽  
Paolo Bartalini

AbstractIn this work, the relative Underlying event (UE) transverse multiplicity activity classifier ($$R_\mathrm{{T}}$$ R T ) is used to study the strange and multi-strange hadron production in proton-proton collisions. Our study with $$R_\mathrm{{T}}$$ R T would allow to disentangle these particles, which are originating from the soft and hard QCD processes. We have used the PYTHIA 8 Monte-Carlo (MC) with a different implementation of color reconnection and rope hadronization models to demonstrate the proton-proton collisions data at $$\sqrt{s}~$$ s = 13 TeV. The relative production of strange and multi-strange hadrons are discussed extensively in low and high transverse activity regions. In this contribution, the relative strange hadron production is enhanced with increasing $$R_\mathrm{{T}}$$ R T . This enhancement is significant for the strange baryons as compared to mesons. In addition, the particle ratios as a function of $$R_\mathrm{{T}}~$$ R T confirm the baryon enhancement in new Color Reconnection (newCR), whereas the Rope model confirms the baryon enhancement only with strange quark content. Experimental confirmation of such results will provide more insight into the soft physics in the transverse region, which will be useful to investigate various tunes based on hadronization and color reconnection schemes.


2018 ◽  
Vol 171 ◽  
pp. 19004
Author(s):  
Fiorella Maria Celeste Fionda

The study of energy and multiplicity dependence of hadron production in proton-proton collisions provides a powerful tool to understand similarities and differences between small and large colliding systems. In this work we present mid-rapidity measurements of the pT spectra and yields of identified hadrons, namely pions, kaons, protons, K0S, Ξ, Ω and in pp collisions at √s = 7 and 13 TeV. The comparison of results at √s = 13 TeV to earlier results at 7 TeV provides insights about the energy dependence of the strangeness enhancement. Comparisons between data and expectations from commonly-used Monte Carlo event generators will be presented.


2019 ◽  
Vol 123 (23) ◽  
Author(s):  
R. Aaij ◽  
C. Abellán Beteta ◽  
B. Adeva ◽  
M. Adinolfi ◽  
C. A. Aidala ◽  
...  

1980 ◽  
Vol 173 (2) ◽  
pp. 348-364 ◽  
Author(s):  
V.V. Abramov ◽  
A.V. Alekseev ◽  
B.Yu. Baldin ◽  
S.I. Bityukov ◽  
V.Yu. Glebov ◽  
...  

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
...  

Abstract This article presents differential measurements of the asymmetry between $$ {\varLambda}_b^0 $$ Λ b 0 and $$ {\overline{\varLambda}}_b^0 $$ Λ ¯ b 0 baryon production rates in proton-proton collisions at centre-of-mass energies of $$ \sqrt{s} $$ s = 7 and 8 TeV collected with the LHCb experiment, corresponding to an integrated luminosity of 3 fb−1. The $$ {\varLambda}_b^0 $$ Λ b 0 baryons are reconstructed through the inclusive semileptonic decay $$ {\varLambda}_b^0 $$ Λ b 0 → $$ {\varLambda}_c^{+} $$ Λ c + μ−$$ \overline{\nu} $$ ν ¯ μX. The production asymmetry is measured both in intervals of rapidity in the range 2.15 < y < 4.10 and transverse momentum in 2 < pT< 27 GeV/c. The results are found to be incompatible with symmetric production with a significance of 5.8 standard deviations for both $$ \sqrt{s} $$ s = 7 and 8 TeV data, assuming no CP violation in the decay. There is evidence for a trend as a function of rapidity with a significance of 4 standard deviations. Comparisons to predictions from hadronisation models in Pythia and heavy-quark recombination are provided. This result constitutes the first observation of a particle-antiparticle asymmetry in b-hadron production at LHC energies.


Sign in / Sign up

Export Citation Format

Share Document