scholarly journals Self-consistent description of the halo nature of 31Ne with continuum and pairing correlations

Author(s):  
shisheng Zhang ◽  
Shiyi Zhong ◽  
Bo Shao ◽  
Michael Smith

Abstract Using a Glauber model with our relativistic fully microscopic structure model input, we give a full description of the halo nature of $^{31}$Ne that includes a self-consistent use of pairing and continuum contributions that makes predictions consistent with reaction cross section measurements. Our predictions of total reaction and one-neutron removal cross sections of $^{31}$Ne on a Carbon target were significantly enhanced compared with those of neighboring Neon isotopes, agreeing with measurements at 240 MeV/nucleon and consistent with a single neutron halo. Furthermore, our calculations of the inclusive longitudinal momentum distribution of the $^{30}$Ne and valence neutron residues from the $^{31}$Ne breakup reaction indicate a dilute density distribution in coordinate space, another halo signature.

2012 ◽  
Vol 21 (10) ◽  
pp. 1250083 ◽  
Author(s):  
M. RASHDAN

The structure of 16-26 O is investigated within the relativistic mean field (RMF) as well as high-energy nuclear collisions. The reaction cross-sections of 16-24 O +12 C around 1 GeV are calculated within the multiple scattering theory, where the multiple integrals are evaluated by Monte Carlo method as well as by the optical limit approximation of the Glauber model. In-medium effects are investigated within the optical limit, where it is found to be important in order to get reliable information about nuclear radii and density distributions. The reaction cross-sections indicate to a halo structure for 23 O . This neutron halo is also found in the rms matter radii and nuclear densities especially when Fermi shape is used in the optical limit, including in-medium effects, in extracting the parameters of the density distributions from the experimental reaction cross-sections.


2001 ◽  
Vol 10 (01) ◽  
pp. 43-53 ◽  
Author(s):  
I. AHMAD ◽  
M. A. ABDULMOMEN ◽  
L. A. AL-KHATTABI

Coulomb modified Glauber model has been applied to calculate α total reaction cross-section for 12 C , 16 O and 40 Ca nuclei in the rigid projectile model using microscopic N-α amplitude which is evaluated in terms of NN scattering amplitude parameters. Using realistic densities for target nuclei and the same input information, we find that the predictions of the rigid projectile approximation for α reaction cross sections are, in general, in better agreement with the experimental data than those of the optical limit approximation.


2011 ◽  
Vol 20 (12) ◽  
pp. 2505-2519 ◽  
Author(s):  
R. N. PANDA ◽  
S. K. PATRA

We calculate the one-neutron removal reaction cross-section (σ-1n) for a few stable and neutron-rich Boron and Carbon halo nuclei with 12 C as target, using relativistic mean field (RMF) densities, in the frame work of Glauber model. The results are compared with the experimental data. Study of the stable nuclei with the deformed densities have shown a good agreement with the data. However, it differs significantly for the halo nuclei. We observe that while estimating the σ-1n value from the difference of reaction cross-sections of two neighboring nuclei with mass number A and that of A-1 in an isotopic chain, we get good agreement with the known experimental data for the halo cases.


2013 ◽  
Vol 22 (01) ◽  
pp. 1350005 ◽  
Author(s):  
MAHESH K. SHARMA ◽  
M. S. MEHTA ◽  
S. K. PATRA

We study the nuclear reaction cross-sections for some of the neutron-rich nuclei in the lighter mass region of the periodic chart which are recently measured. The well-known Glauber formalism is used by taking deformed relativistic and nonrelativistic densities as input in the calculations. We find reasonable reaction cross-sections with both the densities. However with a better inspection of the results, it is noticed that the results obtained with relativistic densities are more closure to the experimental data than the nonrelativistic Skyrme densities.


Sign in / Sign up

Export Citation Format

Share Document