scholarly journals Transonic accretion and winds around Pseudo-Kerr black holes andcomparison with general relativistic solutions

Author(s):  
Abhrajit Bhattacharjee ◽  
Sandip Kumar Chakrabarti ◽  
Dipak Debnath

Abstract Spectral and timing properties of accretion flows on a black hole depend on their density and temperature distributions, which, in turn come from the underlying dynamics. Thus, an accurate description of the flow which includes hydrodynamics and radiative transfer is a must to interpret the observational results. In the case of non-rotating black holes, Pseudo- Newtonian description of surrounding space-time enables one to make a significant progress in predicting spectral and timing properties. This formalism is lacking for the spinning black holes. In this paper, we show that there exists an exact form of ‘natural’ potential derivable from the general relativistic (GR) radial momentum equation written in the local corotating frame. Use of this potential in an otherwise Newtonian set of equations, allows us to describe transonic flows very accurately as is evidenced by comparing with solutions obtained from the full GR framework. We study the properties of the sonic points and the centrifugal pressure supported shocks in the parameter space spanned by the specific energy and the angular momentum, and compare with the results of GR hydrodynamics. We show that this potential can safely be used for the entire range of Kerr parameter −1 < a < 1 for modeling of observational results around spinning black holes. We assume the flow to be inviscid. Thus, it is non-dissipative with constant energy and angular momentum. These assumptions are valid very close to the black hole horizon as the infall time scale is much shorter as compared to the viscous time scale.

2016 ◽  
Vol 12 (S324) ◽  
pp. 23-26
Author(s):  
Petra Suková ◽  
Szymon Charzyński ◽  
Agnieszka Janiuk

AbstractWe present recent results of the studies of low angular momentum accretion of matter onto Schwarzschild black hole using fully relativistic numerical simulations. We compare the resulting 2D structure of transonic flows with results of 1D pseudo-Newtonian computations of non-magnetized flow. The research has observable consequences on black holes on the whole mass scale, in particular it is related to the time-scale and shape of luminosity flares in Sgr A* or to the evolution of QPO frequency during outbursts of microquasars.


2007 ◽  
Vol 16 (07) ◽  
pp. 1211-1218 ◽  
Author(s):  
PING XI ◽  
XIN-ZHOU LI

In this paper, we investigate the evolution of classical wave propagation in the canonical acoustic black hole by a numerical method and discuss the details of the tail phenomenon. The oscillating frequency and damping time scale both increase with the angular momentum l. For lower l, numerical results show the lowest WKB approximation gives the most reliable result. We also find that the time scale of the interim region from ringing to tail is not affected obviously by changing l.


2017 ◽  
Vol 598 ◽  
pp. A38 ◽  
Author(s):  
Zakaria Meliani ◽  
Yosuke Mizuno ◽  
Hector Olivares ◽  
Oliver Porth ◽  
Luciano Rezzolla ◽  
...  

Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims. We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods. More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results. We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions. The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self-consistently calculate general-relativistic accretion flows onto compact objects. In addition to the accurate handling of the matter, we provide a self-consistent electromagnetic emission from these scenarios by solving the associated radiative-transfer problem. While magnetic fields are currently excluded from our analysis, the tools presented here can have a number of applications to study accretion flows onto black holes or neutron stars.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


Author(s):  
Charles D. Bailyn

This chapter explores the ways that accretion onto a black hole produces energy and radiation. As material falls into a gravitational potential well, energy is transformed from gravitational potential energy into other forms of energy, so that total energy is conserved. Observing such accretion energy is one of the primary ways that astrophysicists pinpoint the locations of potential black holes. The spectrum and intensity of this radiation is governed by the geometry of the gas flow, the mass infall rate, and the mass of the accretor. The simplest flow geometry is that of a stationary object accreting mass equally from all directions. Such spherically symmetric accretion is referred to as Bondi-Hoyle accretion. However, accretion flows onto black holes are not thought to be spherically symmetric—the infall is much more frequently in the form of a flattened disk.


2019 ◽  
Vol 488 (2) ◽  
pp. 2412-2422 ◽  
Author(s):  
Indu K Dihingia ◽  
Santabrata Das ◽  
Debaprasad Maity ◽  
Anuj Nandi

ABSTRACT We study the relativistic viscous accretion flows around the Kerr black holes. We present the governing equations that describe the steady-state flow motion in full general relativity and solve them in 1.5D to obtain the complete set of global transonic solutions in terms of the flow parameters, namely specific energy (${\mathcal E}$), specific angular momentum (${\mathcal L}$), and viscosity (α). We obtain a new type of accretion solution which was not reported earlier. Further, we show for the first time to the best of our knowledge that viscous accretion solutions may contain shock waves particularly when flow simultaneously passes through both inner critical point (rin) and outer critical point (rout) before entering into the Kerr black holes. We examine the shock properties, namely shock location (rs) and compression ratio (R, the measure of density compression across the shock front) and show that shock can form for a large region of parameter space in ${\cal L}\!-\!{\cal E}$ plane. We study the effect of viscous dissipation on the shock parameter space and find that parameter space shrinks as α is increased. We also calculate the critical viscosity parameter (αcri) beyond which standing shock solutions disappear and examine the correlation between the black hole spin (ak) and αcri. Finally, the relevance of our work is conferred where, using rs and R, we empirically estimate the oscillation frequency of the shock front (νQPO) when it exhibits quasi-periodic (QP) variations. The obtained results indicate that the present formalism seems to be potentially viable to account for the QPO frequency in the range starting from milli-Hz to kilo-Hz as $0.386~{\rm Hz}\le \nu _{\mathrm{ QPO}} (\frac{10\, \mathrm{M}_\odot }{M_{\mathrm{ BH}}}) \le 1312$ Hz for ak = 0.99, where MBH stands for the black hole mass.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Ángel Rincón ◽  
Victor Santos

AbstractIn this work, we investigate the quasinormal frequencies of a class of regular black hole solutions which generalize Bardeen and Hayward spacetimes. In particular, we analyze scalar, vector and gravitational perturbations of the black hole with the semianalytic WKB method. We analyze in detail the behaviour of the spectrum depending on the parameter p/q of the black hole, the quantum number of angular momentum and the s number. In addition, we compare our results with the classical solution valid for $$p = q = 1$$ p = q = 1 .


2015 ◽  
Vol 24 (12) ◽  
pp. 1544022 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

Kerr black holes (BHs) have their angular momentum, [Formula: see text], bounded by their mass, [Formula: see text]: [Formula: see text]. There are, however, known BH solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat BHs, given in terms of an appropriately defined horizon linear velocity, [Formula: see text]. The [Formula: see text] bound is simply that [Formula: see text] cannot exceed the velocity of light. We verify the [Formula: see text] bound for known BH solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr BHs saturate the [Formula: see text] bound.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Benrong Mu ◽  
Peng Wang ◽  
Haitang Yang

We investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole’s mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.


Sign in / Sign up

Export Citation Format

Share Document