scholarly journals Quantum fluctuations of baryon number density

2021 ◽  
Vol 2105 (1) ◽  
pp. 012006
Author(s):  
Rajeev Singh

Abstract Quantum fluctuation expression of the baryon number for a subsystem consisting of hot relativistic spin− 1 2 particles are derived. These fluctuations seems to diverge in the limit where system size goes to zero. For a broad range of thermodynamic parameters numerical solutions are obtained which might be helpful to interpret the heavy-ion experimental data.

Universe ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 14 ◽  
Author(s):  
Sylvain Mogliacci ◽  
Isobel Kolbé ◽  
W. Horowitz

In this article, we start by presenting state-of-the-art methods allowing us to compute moments related to the globally conserved baryon number, by means of first principle resummed perturbative frameworks. We focus on such quantities for they convey important properties of the finite temperature and density equation of state, being particularly sensitive to changes in the degrees of freedom across the quark-hadron phase transition. We thus present various number susceptibilities along with the corresponding results as obtained by lattice quantum chromodynamics collaborations, and comment on their comparison. Next, omitting the importance of coupling corrections and considering a zero-density toy model for the sake of argument, we focus on corrections due to the small size of heavy-ion collision systems, by means of spatial compactifications. Briefly motivating the relevance of finite size effects in heavy-ion physics, in opposition to the compact star physics, we present a few preliminary thermodynamic results together with the speed of sound for certain finite size relativistic quantum systems at very high temperature.


2019 ◽  
Vol 2019 (12) ◽  
Author(s):  
Asmund Folkestad ◽  
Sašo Grozdanov ◽  
Krishna Rajagopal ◽  
Wilke van der Schee

1990 ◽  
Vol 242 (1) ◽  
pp. 111-114 ◽  
Author(s):  
J. Cleymans ◽  
H. Satz ◽  
E. Suhonen ◽  
D.W. Von Oertzen

1989 ◽  
Vol 54 (6) ◽  
pp. 1475-1481 ◽  
Author(s):  
N. Papadopoulos ◽  
G. Ritzoulis

Molar conductivities at the limit of zero concentration have been evaluated for NaI and NaBPh4 in acetone and in isopropanol at 10, 15, 20, 25, and 30 °C. The experimental data have been analysed by means of the Lee-Wheaton equation. The thermodynamic parameters of the non-coulombic interaction have been evaluated.


Author(s):  
Ivan Saenko ◽  
O. Fabrichnaya

AbstractThermodynamic parameters were assessed for the MgO–FeOx system and combined with already available descriptions of ZrO2-FeOx and ZrO2-MgO systems to calculate preliminary phase diagrams for planning experimental investigations. Samples of selected compositions were heat treated at 1523, 1673 and 1873 K and characterized using x-ray and scanning electron microscopy combined with energy dispersive x-ray spectroscopy (SEM/EDX). Experiments indicated extension of cubic ZrO2 solid solution into the ternary system at 1873 K (75 mol.% ZrO2, 10 mol.% FeOx and 15 mol.% MgO) and limited solubility of 4 mol.% ZrO2 in spinel phase. Based on the obtained results thermodynamic parameters of C-ZrO2 and spinel phase were optimized.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
T. Byvank ◽  
D. A. Endrizzi ◽  
C. B. Forest ◽  
S. J. Langendorf ◽  
K. J. McCollam ◽  
...  

We present experimental data providing evidence for the formation of transient ( ${\sim }20\ \mathrm {\mu }\textrm {s}$ ) plasmas that are simultaneously weakly magnetized (i.e. Hall magnetization parameter $\omega \tau > 1$ ) and dominated by thermal pressure (i.e. ratio of thermal-to-magnetic pressure $\beta > 1$ ). Particle collisional mean free paths are an appreciable fraction of the overall system size. These plasmas are formed via the head-on merging of two plasmas launched by magnetized coaxial guns. The ratio $\lambda _{\textrm {gun}}=\mu _0 I_{\textrm {gun}}/\psi _{\textrm {gun}}$ of gun current $I_{\textrm {gun}}$ to applied magnetic flux $\psi _{\textrm {gun}}$ is an experimental knob for exploring the parameter space of $\beta$ and $\omega \tau$ . These experiments were conducted on the Big Red Ball at the Wisconsin Plasma Physics Laboratory. The transient formation of such plasmas can potentially open up new regimes for the laboratory study of weakly collisional, magnetized, high- $\beta$ plasma physics; processes relevant to astrophysical objects and phenomena; and novel magnetized plasma targets for magneto-inertial fusion.


Proceedings ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Saumen Datta ◽  
Rajiv Gavai ◽  
Sourendu Gupta

One of the main goals of the cold baryonic matter (CBM) experiment at FAIR is to explore the phases of strongly interacting matter at finite temperature and baryon chemical potential μ B . The equation of state of quantum chromodynamics (QCD) at μ B > 0 is an essential input for the CBM experiment, as well as for the beam energy scan in the Relativistic Heavy Ion Collider(RHIC) experiment. Unfortunately, it is highly nontrivial to calculate the equation of state directly from QCD: numerical Monte Carlo studies on lattice are not useful at finite μ B . Using the method of Taylor expansion in chemical potential, we estimate the equation of state, namely the baryon number density and its contribution to the pressure, for two-flavor QCD at moderate μ B . We also study the quark number susceptibilities. We examine the technicalities associated with summing the Taylor series, and explore a Pade resummation. An examination of the Taylor series can be used to get an estimate of the location of the critical point in μ B , T plane.


1999 ◽  
Vol 77 (4) ◽  
pp. 313-318 ◽  
Author(s):  
F -H Liu ◽  
Y A Panebratsev

The pseudorapidity distribution of relativistic singly charged particles produced in high-energy heavy-ion collisions is described by the thermalized cylinder picture. The calculated results are in agreement with the experimental data of lead-induced interactions at 158A GeV/c. PACS Nos.:25.75.-q and 25.75.Dw


Author(s):  
M. Berenguer ◽  
C. Hartnack ◽  
G. Peilert ◽  
A. Rosenhauer ◽  
W. Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document