scholarly journals The Detector Control System for the magnetic field sensors in New Small Wheel phase I upgrade of ATLAS detector

2021 ◽  
Vol 2105 (1) ◽  
pp. 012026
Author(s):  
Stamatios Tzanos

Abstract In conjunction with the High Luminosity upgrade of the Large Hadron Collider accelerator at CERN, the ATLAS detector is also undergoing an upgrade to handle the significantly higher data rates. The muon end-cap system upgrade in ATLAS, lies with the replacement of the Small Wheel. The New Small Wheel (NSW) is expected to combine high tracking precision with upgraded information for the Level-1 trigger. To accomplish this, small Thin Gap Chamber (sTGC) and MicroMegas detector technologies are being deployed. Due to their installation location in ATLAS, the effects of Barrel Toroid and End-Cap Toroid magnets on NSW must be measured. For the final experiment at ATLAS, each sTGC large double wedge will be equipped with magnetic field Hall effect sensors to monitor the magnetic field near the NSW. The readout is done with an Embedded Local Monitor Board (ELMB) called MDT DCS Module (MDM). For the integration of this hardware in the experiment, first, a detector control system was developed to test the functionality of all sensors before their installation on the detectors. Subsequently, another detector control system was developed for the commissioning of the sensors. Finally, a detector control system based on the above two is under development for the expert panels of ATLAS experiment. In this paper, the sensor readout, the connectivity mapping and the detector control systems will be presented.

2021 ◽  
Vol 2105 (1) ◽  
pp. 012025
Author(s):  
Polyneikis Tzanis

Abstract The ATLAS Muon Spectrometer is going through an extensive Phase I upgrade to cope up with the future LHC runs of high luminosity of up to instantaneous luminosity of 7.5 × 1034cm−2s−1. The luminosity increase drastically impacts the ATLAS trigger and readout data rates. The present ATLAS Small Wheel Muon detector will be replaced with a New Small Wheel (NSW) detector which is expected to be installed in the ATLAS underground cavern by the end of the Long Shutdown 2 of the LHC. Due to its complexity and long-term operation, the NSW requires the development of a sophisticated Detector Control System (DCS). The use of such a system is necessary to allow the detector to function consistently and safely as well as to function as a seamless interface to all sub-detectors and the technical infrastructure of the experiment. The central system handles the transition between the probe’s possible operating states while ensuring continuous monitoring and archiving of the system’s operating parameters. Any abnormality in any subsystem of the detector triggers a signal or alert (alarm), which alerts the user and either adapts to automatic processes or allows manual actions to reset the system to function properly.


2020 ◽  
Vol 10 (23) ◽  
pp. 8454
Author(s):  
Soontorn Odngam ◽  
Chaiyut Preecha ◽  
Prapaiwan Sanwong ◽  
Woramet Thongtan ◽  
Jiraphon Srisertpol

This research presents the design and construction of measuring instruments for a dipole magnetic field using a rotating coil technique. This technique is a closed-loop speed-control system where a Proportional-Integral (PI) controller works together with the intensity measurement of the magnetic field through the rotating coil. It was used to analyze the impact on the accuracy of the electromagnetic at speed ranges of 60, 90, and 120 rpm. The error estimation in the measurement of the normal dipole and skew dipole magnet caused by the steady-state error of the speed control system and the rotational search coil in whirling motion are demonstrated. Rotating unbalance, shaft coupling, and misalignment from its setup disturbed the performance of the speed control system as a nonlinear system.


2019 ◽  
Vol 214 ◽  
pp. 01034
Author(s):  
Ralf Spiwoks ◽  
Aaron Armbruster ◽  
German Carrillo-Montoya ◽  
Magda Chelstowska ◽  
Patrick Czodrowski ◽  
...  

The Muon to Central Trigger Processor Interface (MUCTPI) of the ATLAS experiment at the Large Hadron Collider(LHC) at CERN is being upgraded for the next run of the LHC in order to use optical inputs and to provide full-precision information for muon candidates to the topological trigger processor (L1TOPO) of the Level-1 trigger system. The new MUCTPI is implemented as a single ATCA blade with high-end processing FPGAs which eliminate doublecounting of muon candidates in overlapping regions, send muon candidates to L1TOPO, and muon multiplicities tothe Central Trigger Processor (CTP), as well as readout data to the data acquisition system of the experiment. A Xilinx Zynq System-on-Chip (SoC) with a programmable logic part and a processor part is used for the communication to the processing FPGAs and the run control system. The processor part, based on ARM processor cores, is running embedded Linux prepared using the framework of the Linux Foundation's Yocto project. The ATLAS run control software was ported to the processor part and a run control application was developed which receives, at configuration, all data necessary for the overlap handling and candidate counting of the processing FPGAs. During running, the application provides ample monitoring of the physics data and of the operation of the hardware. *


Physics ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 183-193
Author(s):  
Vitalii A. Okorokov

The magnetic field created in proton–proton and nucleus–nucleus collisions at ultra-high energies are studied with models of point-like charges and hard sphere for distribution of the constituents for vacuum conditions. The various beam ions are considered from light to heavy nuclei at energies corresponding to the nominal energies of the proton beam within the projects of further accelerator facilities high-energy Large Hadron Collider (HE-LHC) and Future Circular Collider (FCC). The magnetic-field strength immediately after collisions reaches the value tens of GeV 2 , while in the approach with point-like charges, some overestimate the amplitude of the field in comparison with more realistic hard-sphere model. The absolute value of the magnetic field rapidly decreases with time and increases with growth of atomic number. The amplitude for e B is estimated at level 100 GeV 2 to provide magnitude for quark–quark collisions at energies corresponding to the nominal energies of proton beams. These estimations are close to the range for onset of W boson condensation.


Author(s):  
S. Schlenker ◽  
H. J. Burckhart ◽  
J. Cook ◽  
V. Filimonov ◽  
S. Franz ◽  
...  

2005 ◽  
Vol 475-479 ◽  
pp. 2223-2226
Author(s):  
Zhi-gang Sun ◽  
Masaki Mizuguchi ◽  
Hiroyuki Akinaga

Magnetoresistive switch effect (MRS effect) devices containing two gold (Au) electrodes with a gap less than 2 µm were successfully fabricated on semi-insulting GaAs substrates by wet etching method. Huge MRS effect was observed. Magnetoresistance (MR) ratio reached 1,000,000% under the magnetic filed of 1.5 T when the devices were operated just above the threshold voltage. The magnetic field sensitivity at small magnetic fields was significantly improved. MR ratio of more than 1000% was achieved at 0.03 T. A relative high MR ratio of 100,000% under the magnetic filed of 1.5 T was also achieved when the devices operating before the threshold voltage.


2020 ◽  
Vol 245 ◽  
pp. 02006
Author(s):  
Yuri Smirnov ◽  
Dhiman Chakraborty ◽  
Alexander Solodkov ◽  
Siarhei Harkusha

An overview of the Conditions Database (DB) structure for the hadronic Tile Calorimeter (TileCal), one of the sub-systems of the ATLAS detector at LHC, is presented. ATLAS Conditions DB stores the data on the ORACLE backend, and the design and implementation have been developed using the COOL (Conditions Objects for LCG) software package as a common persistency solution for the storage and management of the conditions data. TileCal conditions and calibration data are stored in 4 separate Databases, each with its own schema: TileCal Online and Offline DBs for data, DB for Monte Carlo simulation and Detector Control System (DCS) DB. In order to ensure smooth operation of the TileCal during data taking, experts perform the necessary calibrations, add the changes of detector status and other conditions data, prepare new conditions for data reprocessing and Monte Carlo production campaigns, and upload the new up-to-date information into DB using custom-made software tools. The procedure of TileCal conditions’ preparation, validation, uploading to DBs is described, and some DB-related statistics collected in Run 2 is presented.


2021 ◽  
Vol 251 ◽  
pp. 04007
Author(s):  
R. Jiménez Estupiñán ◽  
L. Marchese ◽  
D. Di Calafiori ◽  
G. Dissertori ◽  
W. Lustermann ◽  
...  

During the second long shutdown (LS2) of the CERN Large Hadron Collider (LHC), the Detector Control System (DCS) of the Compact Muon Solenoid (CMS) Electromagnetic Calorimeter (ECAL) is undergoing a large software upgrade at various levels. The ECAL DCS supervisory system has been reviewed and extended to migrate the underlying software toolkits and platform technologies to the latest versions. The resulting software will run on top of a new computing infrastructure, using the WinCC Open Architecture (OA) version 3.16 and newly developed communication drivers for some of the hardware. The ECAL DCS has been configured and managed from a different control version system and stored with more modern encoding and file formats. A new set of development guidelines has been prepared for this purpose, including conventions and recommendations from the CMS Central DCS and CERN Joint Controls Project (JCOP) framework groups. The large list of modifications also motivated the revision and reorganization of the software architecture, which is needed to resolve and satisfy additional software dependencies. Many modifications also aimed to improve the installation process, anticipating in some cases works for the next long shutdown upgrade.


2013 ◽  
Vol 22 (07) ◽  
pp. 1330015
Author(s):  
◽  
DOMIZIA ORESTANO

This document presents a brief overview of some of the experimental techniques employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC) in the search for the Higgs boson predicted by the standard model (SM) of particle physics. The data and the statistical analyses that allowed in July 2012, only few days before this presentation at the Marcel Grossman Meeting, to firmly establish the observation of a new particle are described. The additional studies needed to check the consistency between the newly discovered particle and the Higgs boson are also discussed.


Sign in / Sign up

Export Citation Format

Share Document