scholarly journals Effect of Welding Groove and Electrode Variation to the Tensile Strength and Macrostructure on 304 Stainless Steel and AISI 1045 Dissimilar Welding Joint Using SMAW Process

2021 ◽  
Vol 2117 (1) ◽  
pp. 012018
Author(s):  
Suheni ◽  
A A Rosidah ◽  
D P Ramadhan ◽  
T Agustino ◽  
F F Wiranata

Abstract AISI 1045 and 304 stainless steel are widely used in automotive and industrial fields However, both of these steels have their own advantages and disadvantages. AISI 1045 is not resistant to corrosion but has good wear resistance and low price. Meanwhile, the 304 stainless steel provides good corrosion resistance and mechanical properties but is costly. Their combination is able to provide a good property and reduce the costs. Thus, in order to combine these two metals, shield metal arc welding is carried out using welding groove and electrode variation. The groove variations used were double bevel, V, and double V-groove, additionally, the electrode variations used were E6013 and E7016. Then, the welding results were characterized using the tensile strength and macrostructure analysis. The results revealed that the specimen using E7016 electrode for the double V-groove resulted in the highest tensile test results the value of 270.48 MPa yield strength, 411.49 MPa tensile strength, and 19.81% elongation. The macrostructure analysis showed that the specimens using E7016 electrode gave a narrow HAZ that led to higher mechanical properties.

Author(s):  
Augusta Ijeoma Ekpemogu ◽  
Olamide Emmanuel Ariwoola ◽  
Akeem Abiodun Rasheed ◽  
Oladipupo Akinleye Ogundele ◽  
Taiwo Ebenezer Abioye ◽  
...  

In this work, gas metal arc welding of AISI 304 stainless steel at varying compositions of argon-CO2 shielding environment was performed using an established optimum parametric combination. Thereafter, investigations on the microstructure of the welded joints and mechanical properties of the weldments were carried out. Weldments of excellent surface quality that are void of spatters and pores were obtained when the shielding gas composition (wt.%) range is between 100% argon and 75% argon - 25% CO2. Increasing percentage composition of CO2 beyond 25% resulted in irregular bead formation characterized with spatters and pores. The hardness of the welded joint became significantly high as the CO2 composition in the shielding gas increased. The highest value of 310 HV was obtained when the shielding gas composition was 5% argon- 95% CO2. The least (220 HV) was obtained when the shielding gas was 100% argon. High ultimate tensile strength (596 - 378 MPa) was achieved when the shielding gas composition range is between 100% argon and 75% argon-25% CO2. The UTS dropped significantly as the CO2 composition in the shielding gas increased beyond 25%. It decreased from 336 MPa at 70% argon-30% CO2 shielding gas composition to 133 MPa when 100% CO2 was utilized as the shielding gas. At the end, the effects of the CO2 addition and suitable composition of CO2 addition to argon shielding environment during GMAW of AISI 304 stainless steel have been established.


2017 ◽  
Vol 750 ◽  
pp. 26-33
Author(s):  
Alaa Abu Harb ◽  
Ion Ciuca ◽  
Robert Ciocoiu ◽  
Mihai Vasile ◽  
Adrian Bibis ◽  
...  

The welding technique used for ASIS 304 and 316L austenitic stainless steel sheets both with a thickness of 3mm is gas tungsten arc welding (TIG) and manual metal arc welding (MMAW). Mechanical properties that were verified include: hardness test and tensile test before welding and after it. The welding process was done on two types of specimens: with a central hole and without hole. We concluded that there was a decrease in the properties of tensile for both specimens with central hole, and 316L had tensile characteristics better than 304 when using the technique TIG. As for 304, it had tensile characteristics better than 316L when using the technique MMAW. We also concluded that the existence of central holes had an influence on the hardness characteristics on both types. The hardness increased in 304 but decreased in 316L. The welding process also showed that there was no influence of MMAW on hardness on both specimens. However it showed that there was no influence of TIG on the hardness for 304, but for 316L values increased.


2016 ◽  
Vol 705 ◽  
pp. 250-254 ◽  
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
M. Wirawan Pu ◽  
Fandi Alfarizi

The aimed of this research is to determine the feasibility and effect of the mixture of the shielding gas in the physical and mechanical properties. Low carbon steel LR grade A in a thickness 12 mm were joined in butt joint types using GMAW (Gas Metal Arc Welding) with groove’s gap 5 mm and groove angle’s 400 with variation of shielding gas composition. The composition of shielding gas that used were 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2. The measured of mechanical properties with regard to strength, hardness and toughness using, tensile test, bending test, Vickers hardness Test, and Charpy impact test respectively. The physical properties examined with optical microscope. Results show that tensile strength of welding metals are higher than raw materials. Welds metal with mixing Ar + CO shielding gas has the highest tensile strength. Hardness of weld metals with the shielding gas 100% Ar, 100 % CO2 and 50% Ar + 50 % CO2 are 244.9; 209.4; and 209.4 VHN respectively. The temperature of Charpy test was varied to find the transition temperature of the materials. The temperature that used were –60°C, -40°C, -20°C, 0°C, 20°C , and room temperature. Weld metals with various shielding gas have similar trends of toughness flux that was corellated with the microstructure of weld .


2010 ◽  
Vol 654-656 ◽  
pp. 2560-2563 ◽  
Author(s):  
Kalenda Mutombo ◽  
Madeleine du Toit

Semi-automatic and automatic pulsed gas metal arc welding (GMAW) of aluminium alloy 5083 with ER5356 filler wire causes considerable softening in the weld. The tensile strength of dressed automatic welds approaches that of the base metal, but the stress concentration caused by the weld toe in undressed semi-automatic welds reduced the tensile strength significantly. Fully automatic welds displayed improved fatigue properties compared to semi-automatic welds.


2019 ◽  
Vol 26 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Yun ZOU ◽  
Zhenkuan SANG ◽  
Qilong WANG ◽  
Tingchao LI ◽  
Dalei LI ◽  
...  

Abstract: In this study, waterjet peening (WJP) treatments under different water pressures were utilized to improve the mechanical properties of 304 stainless steel. The surface morphologies, microstructures, phases, and mechanical properties under different pressures in the WJP process were systematically investigated. The results show that WJP treatments successfully introduced a hardening layer and residual compressive stress. The optimal hardening layer, hardness, residual compressive stress, tensile strength, and ductility were all recorded at the pressure of 200 MPa. The improved hardness, tensile strength, and ductility of 304 stainless steel treated with WJP treatments at the pressure of 200 MPa can be attributed to the hardening layer with much apparent grain refinement effect, phase transformation, smaller surface roughness, and a specific residual compressive stress, as compared with the WJP treatments under other water pressures.


2015 ◽  
Vol 787 ◽  
pp. 500-504
Author(s):  
P. Manavalan ◽  
S. Ravi ◽  
R. Kesavan

The present investigation is aimed to study the effect of pulsed current gas metal arc welding on the tensile strength of AISI 904L super austenitic stainless steel joint 1.2 mm diameter solid wire of same composition. The joints were fabricated using pulsed current gas metal arc welding and by varying five factors such as peak current, pulse on time, pulse on frequency, background current and welding speed at five different levels. Design matrix based on central composite rotatable design was selected to conduct the experiment and an attempt is made to maximize the tensile strength by optimizing the factors using graphical and numerical optimization techniques. Results were correlated with weld metal microstructures.


Sign in / Sign up

Export Citation Format

Share Document