scholarly journals Galaxy evolution in different environments along redshift within the local universe z < 0.8

2021 ◽  
Vol 2145 (1) ◽  
pp. 012002
Author(s):  
Ponlawat Yoifoi ◽  
Wichean Kriwattanawong

Abstract This study presents the evolution of the galaxies in different matter density along redshift within the local universe. A sample of 702,352 galaxies was collected from the Sloan Digital Sky Survey (SDSS). Under the limitation of the spectroscopic data, the appropriate photometric redshift was used to represent the spectroscopic redshift in the range of 0.0 ≤ z ≤ 0.8. Number density of galaxies, galaxy’s colors, and star formation activities are considered to describe the evolution of galaxies. In summary, the number density is not clearly different although the Dec and RA of the sky areas are disparate, but it steeply declines along the redshift direction. Considering the number density together with galaxies’ Hα emission line from spectroscopic data, we find that both equivalent of hydrogen alpha and Hα flux tend to decrease along the redshift, similar to the decreasing trend of the number density. Furthermore, the galaxy color trend is found to be redder as a function of the redshift for the magnitude range of -19 ≤ M g ≤ -17. It implies that the overview of the star formation activity of the fainter galaxies at the lower redshift tend to show higher than the ones at higher redshift.

2021 ◽  
Vol 503 (3) ◽  
pp. 4309-4319
Author(s):  
Jong Chul Lee ◽  
Ho Seong Hwang ◽  
Hyunmi Song

ABSTRACT To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars, and cluster galaxies from the Sloan Digital Sky Survey (SDSS). With ∼82 000 quasar spectra, we detect 197 Mg ii absorbers in and around the clusters. The detection rate per quasar is 2.7 ± 0.7 times higher inside the clusters than outside the clusters, indicating that Mg ii absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that Mg ii absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 ± 10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.


2017 ◽  
Vol 597 ◽  
pp. A97 ◽  
Author(s):  
L. Morselli ◽  
P. Popesso ◽  
G. Erfanianfar ◽  
A. Concas

2019 ◽  
Vol 629 ◽  
pp. A7
Author(s):  
Mikkel O. Lindholmer ◽  
Kevin A. Pimbblet

In this work we use the property that, on average, star formation rate increases with redshift for objects with the same mass – the so called galaxy main sequence – to measure the redshift of galaxy clusters. We use the fact that the general galaxy population forms both a quenched and a star-forming sequence, and we locate these ridges in the SFR–M⋆ plane with galaxies taken from the Sloan Digital Sky Survey in discrete redshift bins. We fitted the evolution of the galaxy main sequence with redshift using a new method and then subsequently apply our method to a suite of X-ray selected galaxy clusters in an attempt to create a new distance measurement to clusters based on their galaxy main sequence. We demonstrate that although it is possible in several galaxy clusters to measure the main sequences, the derived distance and redshift from our galaxy main sequence fitting technique has an accuracy of σz = ±0.017 ⋅ (z + 1) and is only accurate up to z ≈ 0.2.


2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


2019 ◽  
Vol 624 ◽  
pp. A48 ◽  
Author(s):  
Anna de Graaff ◽  
Yan-Chuan Cai ◽  
Catherine Heymans ◽  
John A. Peacock

Observations of galaxies and galaxy clusters in the local universe can account for only ∼10% of the total baryon content. Cosmological simulations predict that the “missing baryons” are spread throughout filamentary structures in the cosmic web, forming a low-density gas with temperatures of 105−107 K. We search for this warm-hot intergalactic medium (WHIM) by stacking the Planck Compton y-parameter map of the thermal Sunyaev-Zel’dovich (tSZ) effect for 1 002 334 pairs of CMASS galaxies from the Sloan Digital Sky Survey. We model the contribution from the galaxy halo pairs assuming spherical symmetry, finding a residual tSZ signal at the 2.9σ level from a stacked filament of length 10.5 h−1 Mpc with a Compton parameter magnitude y = (0.6 ± 0.2)×10−8. We consider possible sources of contamination and conclude that bound gas in haloes may contribute only up to 20% of the measured filamentary signal. To estimate the filament gas properties we measure the gravitational lensing signal for the same sample of galaxy pairs; in combination with the tSZ signal, this yields an inferred gas density of ρb = (5.5 ± 2.9) × ρ̄b with a temperature T = (2.7 ± 1.7) × 106 K. This result is consistent with the predicted WHIM properties, and overall the filamentary gas can account for 11 ± 7% of the total baryon content of the Universe. We also see evidence that the gas filament extends beyond the galaxy pair. Averaging over this longer baseline boosts the significance of the tSZ signal and increases the associated baryon content to 28 ± 12% of the global value.


2021 ◽  
Vol 7 (2) ◽  
pp. 81-88
Author(s):  
J. R. Malla ◽  
W. Saurer ◽  
B. Aryal

This paper presents an analysis of the spin vector orientations of SDSS (Sloan Digital Sky Survey) galaxies in the Supercluster S [195+027+0022] using the seventh data release (2008 October). By using the spectroscopic database of galaxies, identified number density map in the region of Superclusters. Several density enhancements are observed, suggesting the possibility of substructure in the Supercluster. Two-dimensional observed parameters that we received from the database are used to compute three-dimensional galaxy rotation axes by applying `position angle-inclination' method. Apply the selection effects by performing the random simulation method. The expected distribution curves are obtained from the simulation. Chi-square, auto-correlation, and Fourier tests are used to examine non-random effects in the polar and azimuthal angle distributions of the galaxy rotation axes. To check these results with the different galaxy evolution models namely Hierarchy, Primordial, and Pancake model. The result supports the Hierarchy model.


2005 ◽  
Vol 619 (1) ◽  
pp. L27-L30 ◽  
Author(s):  
Luciana Bianchi ◽  
Mark Seibert ◽  
Wei Zheng ◽  
David A. Thilker ◽  
Peter G. Friedman ◽  
...  

2018 ◽  
Vol 479 (1) ◽  
pp. 562-569 ◽  
Author(s):  
Eunbin Kim ◽  
Sungsoo S Kim ◽  
Yun-Young Choi ◽  
Gwang-Ho Lee ◽  
Richard de Grijs ◽  
...  

ABSTRACT We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr &lt; −19.5 mag at 0.02 ≤ $z$ &lt; 0.055 by excluding barred galaxies, where the aperture of the SDSS spectroscopic fibre covers the bulges of the galaxies. We adopt the ellipticity of bulges measured by Simard et al., who performed two-dimensional bulge + disc decompositions using the SDSS images of galaxies, and identify nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.


2012 ◽  
Vol 10 (H16) ◽  
pp. 1-15
Author(s):  
Karen L. Masters

AbstractWe live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.


2020 ◽  
Vol 15 (S359) ◽  
pp. 168-169
Author(s):  
Vitor Bootz ◽  
Marina Trevisan ◽  
Trinh Thuan ◽  
Yuri Izotov ◽  
Angela Krabbe ◽  
...  

AbstractInteractions and mergers between dwarf galaxies are mostly gas-rich and should be marked by an intense star formation activity. But these processes, which are expected to be common at earlier times, are very difficult to observe at low redshifts. To investigate that, we look in the Sloan Digital Sky Survey (SDSS) for compact groups that contain one luminous compact galaxy (LCG) with very high specific star formation rate (sSFR) and at least two other blue galaxies. We found 24 groups that satisfy these criteria, among which 12 groups have SDSS spectroscopic data for at least 2 member galaxies. Here we want to investigate, using the tidal strength estimator Q, how interactions between neighbouring galaxies affect the sSFR and concentration of each LCG. Statistical tests reveal a correlation between Q and their sSFR, indicating that tidal forces between neighbouring galaxies might be inducing bursts of star formation in the LCGs.


Sign in / Sign up

Export Citation Format

Share Document