scholarly journals Crop prediction using machine learning

2022 ◽  
Vol 2161 (1) ◽  
pp. 012033
Author(s):  
Madhuri Shripathi Rao ◽  
Arushi Singh ◽  
N.V. Subba Reddy ◽  
Dinesh U Acharya

Abstract For most developing countries, agriculture is their primary source of revenue. Modern agriculture is a constantly growing approach for agricultural advances and farming techniques. It becomes challenging for the farmers to satisfy our planet’s evolving requirements and the expectations of merchants, customers, etc. Some of the challenges the farmers face are-(i) Dealing with climatic changes because of soil erosion and industry emissions (ii) Nutrient deficiency in the soil, caused by a shortage of crucial minerals such as potassium, nitrogen, and phosphorus can result in reduced crop growth. (iii) Farmers make a mistake by cultivating the same crops year after year without experimenting with different varieties. They add fertilizers randomly without understanding the inferior quality or quantity. The paper aims to discover the best model for crop prediction, which can help farmers decide the type of crop to grow based on the climatic conditions and nutrients present in the soil. This paper compares popular algorithms such as K-Nearest Neighbor (KNN), Decision Tree, and Random Forest Classifier using two different criterions Gini and Entropy. Results reveal that Random Forest gives the highest accuracy among the three.

2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


2020 ◽  
pp. 073563312096731
Author(s):  
Bowen Liu ◽  
Wanli Xing ◽  
Yifang Zeng ◽  
Yonghe Wu

Massive Open Online Courses (MOOCs) have become a popular tool for worldwide learners. However, a lack of emotional interaction and support is an important reason for learners to abandon their learning and eventually results in poor learning performance. This study applied an integrative framework of achievement emotions to uncover their holistic influence on students’ learning by analyzing more than 400,000 forum posts from 13 MOOCs. Six machine-learning models were first built to automatically identify achievement emotions, including K-Nearest Neighbor, Logistic Regression, Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machines. Results showed that Random Forest performed the best with a kappa of 0.83 and an ROC_AUC of 0.97. Then, multilevel modeling with the “Stepwise Build-up” strategy was used to quantify the effect of achievement emotions on students’ academic performance. Results showed that different achievement emotions influenced students’ learning differently. These findings allow MOOC platforms and instructors to provide relevant emotional feedback to students automatically or manually, thereby improving their learning in MOOCs.


2019 ◽  
Vol 11 (8) ◽  
pp. 976
Author(s):  
Nicholas M. Enwright ◽  
Lei Wang ◽  
Hongqing Wang ◽  
Michael J. Osland ◽  
Laura C. Feher ◽  
...  

Barrier islands are dynamic environments because of their position along the marine–estuarine interface. Geomorphology influences habitat distribution on barrier islands by regulating exposure to harsh abiotic conditions. Researchers have identified linkages between habitat and landscape position, such as elevation and distance from shore, yet these linkages have not been fully leveraged to develop predictive models. Our aim was to evaluate the performance of commonly used machine learning algorithms, including K-nearest neighbor, support vector machine, and random forest, for predicting barrier island habitats using landscape position for Dauphin Island, Alabama, USA. Landscape position predictors were extracted from topobathymetric data. Models were developed for three tidal zones: subtidal, intertidal, and supratidal/upland. We used a contemporary habitat map to identify landscape position linkages for habitats, such as beach, dune, woody vegetation, and marsh. Deterministic accuracy, fuzzy accuracy, and hindcasting were used for validation. The random forest algorithm performed best for intertidal and supratidal/upland habitats, while the K-nearest neighbor algorithm performed best for subtidal habitats. A posteriori application of expert rules based on theoretical understanding of barrier island habitats enhanced model results. For the contemporary model, deterministic overall accuracy was nearly 70%, and fuzzy overall accuracy was over 80%. For the hindcast model, deterministic overall accuracy was nearly 80%, and fuzzy overall accuracy was over 90%. We found machine learning algorithms were well-suited for predicting barrier island habitats using landscape position. Our model framework could be coupled with hydrodynamic geomorphologic models for forecasting habitats with accelerated sea-level rise, simulated storms, and restoration actions.


2019 ◽  
Vol 9 (2) ◽  
pp. 185
Author(s):  
Herry Sujaini

Dalam dekade terakhir, metode non-parametrik (algoritma berbasis pembelajaran mesin) semakin banyak dipergunakan dari berbagai aplikasi berbasis pengolahan citra digital. Penelitian ini bertujuan untuk membandingkan tiga metode non-parametrik yaitu Metode k-Nearest Neighbor (kNN), Random Forest (RF), dan Support Vector Machine (SVM) terhadap klasifikasi citra alat musik tradisional di Indonesia yang populer di kalangan masyarakat yaitu : angklung, djembe, gamelan, gong, gordang, kendang, kolintang, rebana, sasando, dan serunai. Dari hasil eksperimen pengklasifikasian dengan metode kNN, RF dan SVM, metode kNN memiliki akurasi yang paling baik. Rata-rata nilai precision ketiga metode tersebut berturut-turut adalah 92,1% untuk kNN, 85,4% untuk SVM, dan 69,4% untuk RF


Author(s):  
Dwi Suroso ◽  
Refa Rupaksi ◽  
Aditya Krisnawan ◽  
Nur Siddiq

The device-free indoor localization (DFIL) research is gaining attention due to the popularity of location-based service (LBS)-based advertisement. In DFIL, a user or an object does not need to bring any device to be localized. In this paper, we propose the Wi-Fi-based DFIL and the random forest algorithm for the fingerprint-based technique. The simple parameter commonly used in indoor localization is the Received Signal Strength Indicator (RSSI). We apply the fingerprint technique because of its reliability to handle the RSSI fluctuation and time-varying effect in a static indoor environment. We conducted an actual measurement campaign to observe the DFIL's implementation visibility. The DFIL system works by comparing the database fingerprint in an empty open office with the database in which a person is inside the measurement area without bringing any devices. Thus, we have the device-free RSSI database for fingerprint technique from both empty rooms and RSSI affected by a person inside the room. We validated the random forest algorithm results by comparing them with the k-nearest neighbor (kNN) and artificial neural network (ANN). The results show that our proposed system's accuracy is better than kNN and ANN with a mean error of 0.63 m than kNN with 0.80 m and ANN with 1.01 m. Meanwhile, the precision of the random forest is 0.63 m, whereas kNN and ANN are 0.67 m and 0.80 m, showing that the random forest performed better. We concluded that our simple DFIL system is visible to apply with acceptable accuracy performance.


2020 ◽  
Vol 37 (4) ◽  
pp. 563-569
Author(s):  
Dželila Mehanović ◽  
Jasmin Kevrić

Security is one of the most actual topics in the online world. Lists of security threats are constantly updated. One of those threats are phishing websites. In this work, we address the problem of phishing websites classification. Three classifiers were used: K-Nearest Neighbor, Decision Tree and Random Forest with the feature selection methods from Weka. Achieved accuracy was 100% and number of features was decreased to seven. Moreover, when we decreased the number of features, we decreased time to build models too. Time for Random Forest was decreased from the initial 2.88s and 3.05s for percentage split and 10-fold cross validation to 0.02s and 0.16s respectively.


Witheverypassingsecondsocialnetworkcommunityisgrowingrapidly,becauseofthat,attackershaveshownkeeninterestinthesekindsofplatformsandwanttodistributemischievouscontentsontheseplatforms.Withthefocus on introducing new set of characteristics and features forcounteractivemeasures,agreatdealofstudieshasresearchedthe possibility of lessening the malicious activities on social medianetworks. This research was to highlight features for identifyingspammers on Instagram and additional features were presentedto improve the performance of different machine learning algorithms. Performance of different machine learning algorithmsnamely, Multilayer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)were evaluated on machine learning tools named, RapidMinerand WEKA. The results from this research tells us that RandomForest (RF) outperformed all other selected machine learningalgorithmsonbothselectedmachinelearningtools.OverallRandom Forest (RF) provided best results on RapidMiner. Theseresultsareusefulfortheresearcherswhoarekeentobuildmachine learning models to find out the spamming activities onsocialnetworkcommunities.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xueyuan Huang ◽  
Yongjun Wang ◽  
Bingyu Chen ◽  
Yuanshuai Huang ◽  
Xinhua Wang ◽  
...  

Background: Predicting the perioperative requirement for red blood cells (RBCs) transfusion in patients with the pelvic fracture may be challenging. In this study, we constructed a perioperative RBCs transfusion predictive model (ternary classifications) based on a machine learning algorithm.Materials and Methods: This study included perioperative adult patients with pelvic trauma hospitalized across six Chinese centers between September 2012 and June 2019. An extreme gradient boosting (XGBoost) algorithm was used to predict the need for perioperative RBCs transfusion, with data being split into training test (80%), which was subjected to 5-fold cross-validation, and test set (20%). The ability of the predictive transfusion model was compared with blood preparation based on surgeons' experience and other predictive models, including random forest, gradient boosting decision tree, K-nearest neighbor, logistic regression, and Gaussian naïve Bayes classifier models. Data of 33 patients from one of the hospitals were prospectively collected for model validation.Results: Among 510 patients, 192 (37.65%) have not received any perioperative RBCs transfusion, 127 (24.90%) received less-transfusion (RBCs < 4U), and 191 (37.45%) received more-transfusion (RBCs ≥ 4U). Machine learning-based transfusion predictive model produced the best performance with the accuracy of 83.34%, and Kappa coefficient of 0.7967 compared with other methods (blood preparation based on surgeons' experience with the accuracy of 65.94%, and Kappa coefficient of 0.5704; the random forest method with an accuracy of 82.35%, and Kappa coefficient of 0.7858; the gradient boosting decision tree with an accuracy of 79.41%, and Kappa coefficient of 0.7742; the K-nearest neighbor with an accuracy of 53.92%, and Kappa coefficient of 0.3341). In the prospective dataset, it also had a food performance with accuracy 81.82%.Conclusion: This multicenter retrospective cohort study described the construction of an accurate model that could predict perioperative RBCs transfusion in patients with pelvic fractures.


Sign in / Sign up

Export Citation Format

Share Document