scholarly journals Detection of nano-particles by dynamic dislocation-defect analysis

2010 ◽  
Vol 240 ◽  
pp. 012031 ◽  
Author(s):  
Shig Saimoto
2006 ◽  
Vol 519-521 ◽  
pp. 777-782
Author(s):  
Shigeo Saimoto ◽  
S. Subbaiyan ◽  
C. Gabryel

In dynamic dislocation-defect analysis, the thermodynamic deformation-mode signatures are examined as the ageing proceeds. In this method, the activation volume (ν) and the mean slip distance (λ) is simultaneously determined with the flow stress (τ) such that the inverse workhardening slope (1/θ) can be plotted versus b2λ/ν where b is the Burgers vector. The slope of this almost linear locus is directly proportional to the activation distance (d). Calibration with a model alumina-dispersed high conductivity copper reveals that punched-out loops are produced up to failure and is represented by a linear locus from 0.1 to 11 % strain. Artificial ageing of AA6111 at 180°C follows this pattern but the naturally-aged specimen manifest a distinctly different signature which shows a transition as the GP zone-type precipitates are sheared. Furthermore by selecting a suitable tensile-test temperature below 250K, the particle size and volume fraction can be determined if particle shearing does not take place. The optimum size and volume fraction necessary for sufficient strength and ductility can be assessed using this method.


Author(s):  
L. Westfall ◽  
B. J. Diak ◽  
M. A. Singh ◽  
S. Saimoto

Crystalline defects other than the essential dislocations are produced by dislocation intersections resulting in debris, which can transform into loops, point defects, and∕or nanovoids. The stress concentrations ahead of slip clusters promote void formation leading to incipient cracks. To evaluate the progression of these processes during deformation, dynamic dislocation-defect analysis was applied to nominally pure aluminum, Al–Mg, and Al–Cu alloys. In the case of nanovoid formation, small angle X-ray scattering (SAXS) was used to quantitatively assess if the void size and its volume fraction can be determined to directly correlate with the measured thermodynamic response values. The SAXS signal from the nanovoids in nominally pure aluminum is distinctly measurable. On the other hand, thermomechanical processing of even nominally pure aluminum results in the formation of nanoprecipitates, which requires future calibration.


2007 ◽  
Vol 539-543 ◽  
pp. 2192-2197 ◽  
Author(s):  
Shigeo Saimoto

Measurements of the activation volume and mean slip distance were used in the dynamic dislocation-defect analysis to reveal the dislocation-obstacle evolution with strain. Due to the large effect of point defect mobility above 250 K on the strain rate sensitivity, fine-grained Al specimens with the grain-boundaries sealed and unsealed as vacancy sinks were tested at 300 K as the reference behaviour. The activation distance diagrams revealed that the artificially aged products in AA6111 and naturally aged extruded AA6063 can be used to examine the effect of chopping-up of particles on the ductility of the samples. Thus a means to examine strength-structure-ductility of specific products have been devised.


Author(s):  
Martin J. Mahon ◽  
Patrick W. Keating ◽  
John T. McLaughlin

Coatings are applied to appliances, instruments and automobiles for a variety of reasons including corrosion protection and enhancement of market value. Automobile finishes are a highly complex blend of polymeric materials which have a definite impact on the eventual ability of a car to sell. Consumers report that the gloss of the finish is one of the major items they look for in an automobile.With the finish being such an important part of the automobile, there is a zero tolerance for paint defects by auto assembly plant management. Owing to the increased complexity of the paint matrix and its inability to be “forgiving” when foreign materials are introduced into a newly applied finish, the analysis of paint defects has taken on unparalleled importance. Scanning electron microscopy with its attendant x-ray analysis capability is the premier method of examining defects and attempting to identify their root cause.Defects are normally examined by cutting out a coupon sized portion of the autobody and viewing in an SEM at various angles.


Author(s):  
A. K. Datye ◽  
D. S. Kalakkad ◽  
L. F. Allard ◽  
E. Völkl

The active phase in heterogeneous catalysts consists of nanometer-sized metal or oxide particles dispersed within the tortuous pore structure of a high surface area matrix. Such catalysts are extensively used for controlling emissions from automobile exhausts or in industrial processes such as the refining of crude oil to produce gasoline. The morphology of these nano-particles is of great interest to catalytic chemists since it affects the activity and selectivity for a class of reactions known as structure-sensitive reactions. In this paper, we describe some of the challenges in the study of heterogeneous catalysts, and provide examples of how electron holography can help in extracting details of particle structure and morphology on an atomic scale.Conventional high-resolution TEM imaging methods permit the image intensity to be recorded, but the phase information in the complex image wave is lost. However, it is the phase information which is sensitive at the atomic scale to changes in specimen thickness and composition, and thus analysis of the phase image can yield important information on morphological details at the nanometer level.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Author(s):  
David J. Smith

The electron microscope has evolved to the level where it is now straightforward to record highresolution images from thin samples (t∼10 to 20nm) that are directly interpretable in terms of atomic arrangements. Whilst recorded images necessarily represent two-dimensional projections of the structure, many defects such as dislocations and interfaces may be linear or planar in nature and thus might be expected to be amenable to detailed characterization. In this review, we briefly consider the recent significant progress that has been made in quantitative defect analysis using the high-resolution electron microscope and then discuss some drawbacks to the technique as well as potential scope for further improvements. Surveys of defect modelling for some small-unit-cell materials and interfaces have recently been published, and reference should be made to other papers in this symposium for further examples.The technique of structure imaging originated in the early '70s with observations of large-unit-cell block oxides.


Sign in / Sign up

Export Citation Format

Share Document