scholarly journals Hardware demonstrator of a compact first-level muon track trigger for future hadron collider experiments

2019 ◽  
Vol 14 (02) ◽  
pp. P02027-P02027
Author(s):  
D. Cieri ◽  
S. Abovyan ◽  
V. Danielyan ◽  
M. Fras ◽  
P. Gadow ◽  
...  
Keyword(s):  
Author(s):  
S. Abovyan ◽  
D. Cieri ◽  
V. Danielyan ◽  
M. Fras ◽  
Ph. Gadow ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Davide Cieri ◽  
S. Abovyan ◽  
V. Danielyan ◽  
M. Fras ◽  
P. Gadow ◽  
...  
Keyword(s):  

Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

At the core of any theoretical description of hadron collider physics is a fixed-order perturbative treatment of a hard scattering process. This chapter is devoted to a survey of fixed-order predictions for a wide range of Standard Model processes. These range from high cross-section processes such as jet production to much more elusive reactions, such as the production of Higgs bosons. Process by process, these sections illustrate how the techniques developed in Chapter 3 are applied to more complex final states and provide a summary of the fixed-order state-of-the-art. In each case, key theoretical predictions and ideas are identified that will be the subject of a detailed comparison with data in Chapters 8 and 9.


1996 ◽  
Vol 14 (3) ◽  
pp. 347-368 ◽  
Author(s):  
V.Yu. Baranov ◽  
K.N. Makarov ◽  
V.C. Roerich ◽  
Yu.A. Satov ◽  
A.N. Starostin ◽  
...  

The results of lead ion generation with charge state from Pb10+ to Pb35+ from laser-heated plasma are presented. CO2 lasers producing 10.6-μm wavelength radiation at power densities in the range 4.1011-6.1014 W/cm2 in TBKI and CERN were used. Results of detailed numerical simulations presented in the paper are in good agreement with the experimental data. Work done in collaboration with CERN, ITEP, and TBKI was aimed at the specification of requirements for a laser system that will be able to drive an ion source for the hadron collider (LHC) at CERN.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy ◽  
Matthew J. Smylie

Abstract In this work we study the collider phenomenology of color-octet scalars (sgluons) in minimal supersymmetric models endowed with a global continuous R symmetry. We systematically catalog the significant decay channels of scalar and pseudoscalar sgluons and identify novel features that are natural in these models. These include decays in nonstandard diboson channels, such as to a gluon and a photon; three-body decays with considerable branching fractions; and long-lived particles with displaced vertex signatures. We also discuss the single and pair production of these particles and show that they can evade existing constraints from the Large Hadron Collider, to varying extents, in large regions of reasonable parameter space. We find, for instance, that a 725 GeV scalar and a 350 GeV or lighter pseudoscalar can still be accommodated in realistic scenarios.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. V. Garzelli ◽  
L. Kemmler ◽  
S. Moch ◽  
O. Zenaiev

Abstract We present predictions for heavy-quark production at the Large Hadron Collider making use of the $$ \overline{\mathrm{MS}} $$ MS ¯ and MSR renormalization schemes for the heavy-quark mass as alternatives to the widely used on-shell renormalization scheme. We compute single and double differential distributions including QCD corrections at next-to-leading order and investigate the renormalization and factorization scale dependence as well as the perturbative convergence in these mass renormalization schemes. The implementation is based on publicly available programs, MCFM and xFitter, extending their capabilities. Our results are applied to extract the top-quark mass using measurements of the total and differential $$ t\overline{t} $$ t t ¯ production cross-sections and to investigate constraints on parton distribution functions, especially on the gluon distribution at low x values, from available LHC data on heavy-flavor hadro-production.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Vincenzo Cirigliano ◽  
Kaori Fuyuto ◽  
Christopher Lee ◽  
Emanuele Mereghetti ◽  
Bin Yan

Abstract We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel ep→τX, within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various τ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in τ-e transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from pp→eτX at the Large Hadron Collider to decays of B mesons and τ leptons, such as τ→eγ, τ→eℓ+ℓ−, and crucially the hadronic modes τ→eY with Y∈π, K, ππ, Kπ, …. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by τ decays, while operators involving the c and b quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the τ tagger in hadronic channels, an exploration of background suppression through tagging b and c jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.


Sign in / Sign up

Export Citation Format

Share Document