scholarly journals An evapotranspiration deficit-based drought index to detect variability of terrestrial carbon productivity in the Middle East

Author(s):  
Karam Alsafadi ◽  
Nadhir Al-Ansari ◽  
Ali Mokhtar ◽  
Safwan Mohammed ◽  
Ahmed Elbeltagi ◽  
...  

Abstract The primary driver of the land carbon sink is gross primary productivity (GPP), the gross absorption of carbon dioxide (CO2) by plant photosynthesis, which currently accounts for about one-quarter of anthropogenic CO2 emissions per year. This study aimed to detect the variability of carbon productivity using the Standardized Evapotranspiration Deficit Index (SEDI). Sixteen countries in the Middle East (ME) were selected to investigate drought. To this end, the yearly GPP dataset for the study area, spanning the 35 years (1982–2017) was used. Additionally, the Global Land Evaporation Amsterdam Model (GLEAM, version 3.3a), which estimates the various components of terrestrial evapotranspiration (annual actual and potential evaporation), was used for the same period. The main findings indicated that productivity in croplands and grasslands was more sensitive to the SEDI in Syria, Iraq, and Turkey by 34, 30.5, and 29.6% of cropland area respectively, and 25 31.5 and 30.5% of grass land area. A significant positive correlation against the long-term data of the SEDI was recorded. Notably, the GPP recorded a decline of >60% during the 2008 extreme drought in the north of Iraq and the northeast of Syria, which concentrated within the agrarian ecosystem and reached a total vegetation deficit with 100% negative anomalies. The reductions of the annual GPP and anomalies from 2009 to 2012 might have resulted from the decrease in the annual SEDI at the peak 2008 extreme drought event. Ultimately, this led to a long delay in restoring the ecosystem in terms of its vegetation cover. Thus, the proposed study reported that the SEDI is more capable of capturing the GPP variability and closely linked to drought than commonly used indices. Therefore, understanding the response of ecosystem productivity to drought can facilitate the simulation of ecosystem changes under climate change projections.

2014 ◽  
Vol 11 (24) ◽  
pp. 7159-7178 ◽  
Author(s):  
A. Piayda ◽  
M. Dubbert ◽  
C. Rebmann ◽  
O. Kolle ◽  
F. Costa e Silva ◽  
...  

Abstract. Savannah-type ecosystems account for 26–30% of global gross primary productivity GPP, with water being one of the major driving factors. In Europe, savannah-type woodlands cover an area of about 1.5 million ha. Here, the recent past has shown a significant decrease in precipitation P in winter and spring as well as a decrease in total annual precipitation. Strong effects on local water balance and carbon sink strength have thus been reported due to changes in precipitation regime. The objective of this study is to quantify the impact of the extreme drought event in 2012 on the water balance, gross primary productivity and carbon sink strength of a typical Portuguese cork-oak woodland (montado) compared to the wet year of 2011. Physiological responses of the dominant tree species Quercus suber (L.) are disentangled employing combined photosynthesis and stomatal conductance modelling. Precipitation effectiveness ET/P increased from 86% in 2011 to 122% in the 2012 dry year due to deep soil or groundwater access of the Q. suber trees leaving no water for groundwater replenishment. Understorey and overstorey GPP were strongly reduced, by 53 and 28%, respectively, in 2012 compared to 2011, due to the late onset of the autumn rains in 2011 and an additional severe winter/spring drought. However, the ecosystem was still a carbon sink in both years, but with a 38% reduced sink strength under extreme drought in 2012 compared to 2011. The combined photosynthesis–stomatal conductance model yielded the best results if it was allowed to adjust photosynthetic and stomatal parameters simultaneously. If stomatal response was modelled with the Leuning approach, which allows for a different sensitivity to vapour pressure deficit, the stomatal model parameters were highly coupled. A change in either of the parameters needed to be compensated by the other to guarantee a stable sensitivity of stomatal conductance to assimilation, independent of variations in vapour pressure deficit. The Q. suber trees showed a 37% reduced stomatal conductance during the drought period of 2012 compared to 2011, due to water supply limitations. In response to reduced leaf-internal CO2 availability, the trees strongly reduced the apparent maximum carboxylation rate by 43% in 2012 compared to 2011. Unexpectedly, the optimum temperature Topt of the maximum electron transport rate decreased during the drought period, enhancing the susceptibility of the trees to high temperature stress during the summer. Our results suggest that, if the trend of decreasing annual precipitation and changed precipitation patterns on the Iberian Peninsula continues, sustained effects on local groundwater reservoirs, understorey species composition and tree mortality have to be expected in the long term. To model the effect of drought on the montado ecosystem successfully, variable apparent maximum carboxylation rate Vc,max, stomatal conductance parameter m and vapour pressure deficit sensitivity parameter D0 need to be incorporated into photosynthesis–stomatal conductance modelling.


2014 ◽  
Vol 11 (7) ◽  
pp. 10365-10417 ◽  
Author(s):  
A. Piayda ◽  
M. Dubbert ◽  
C. Rebmann ◽  
O. Kolle ◽  
F. Costa e Silva ◽  
...  

Abstract. Savannah-type ecosystems account for 26–30% of global gross primary productivity GPP with water being one of the major driving factors. In Europe, savannah-type woodlands cover an area of about 1.5 million ha. Here, the recent past has shown a significant decrease of precipitation P in winter and spring as well as decrease of total annual precipitation. Strong effects on local water balance and carbon sink strength have thus been reported due to changes in precipitation regime. The objective of this study is to quantify the impact of the extreme drought event in 2012 on the water balance, gross primary productivity and carbon sink strength of a typical Portuguese cork-oak woodland (montado) compared to the wet year 2011. Physiological responses of the dominant tree species Quercus suber (L.) are disentangled, employing combined photosynthesis and stomatal conductance modelling. Precipitation effectiveness ET / P increased from 86% in 2011 to 122% in the dry year 2012 due to deep soil or ground water access of the Q. suber trees leaving no water for ground water replenishment. Understorey and overstorey GPP were strongly reduced by 53% and 28%, respectively, in 2012 compared to 2011 due to the late onset of the autumn rains in 2011 and an additional severe winter/spring drought. However, the ecosystem was still a carbon sink in both years but with a 38% reduced sink strength under extreme drought in 2012 compared to 2011. The combined photosynthesis-stomatal conductance model yielded best results if it was allowed to adjust photosynthetic and stomatal parameters simultaneously. If stomatal response was modelled with the Leuning approach, which allows for a different sensitivity to vapour pressure deficit, the stomatal model parameters were highly coupled. A change in either of the parameters needed to be compensated by the other to guarantee a stable sensitivity of stomatal conductance to assimilation, independently from variations in vapour pressure deficit. The Q. suber trees showed a 31% reduced stomatal conductance during the drought period 2012 compared to 2011 due to water supply limitations. In response to reduced leaf internal CO2 availability, the trees strongly reduced apparent maximum carboxylation rate by 39% in 2012 compared to 2011. Unexpectedly, the optimum temperature Topt of maximum electron transport rate decreased during the drought period, enhancing the susceptibility of the trees to high temperature stress during the summer. Our results suggest that, if the trend of decreasing annual precipitation and changed precipitation pattern on the Iberian Peninsula continues, sustained effects on local ground water reservoirs, understorey species composition and tree mortality have to be expected in the long term. To successfully model the effect of drought on the montado ecosystem, variable apparent maximum carboxylation rate Vc,max, stomatal conductance parameter m and vapor pressure deficit sensitivity parameter D0 need to be incorporated in photosynthesis-stomatal conductance modelling.


Author(s):  
Esraa Aladdin Noori ◽  
Nasser Zain AlAbidine Ahmed

The Russian-American relations have undergone many stages of conflict and competition over cooperation that have left their mark on the international balance of power in the Middle East. The Iraqi and Syrian crises are a detailed development in the Middle East region. The Middle East region has allowed some regional and international conflicts to intensify, with the expansion of the geopolitical circle, which, if applied strategically to the Middle East region, covers the area between Afghanistan and East Asia, From the north to the Maghreb to the west and to the Sudan and the Greater Sahara to the south, its strategic importance will seem clear. It is the main lifeline of the Western world.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Zhang ◽  
Feng Jiang ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Axel Timmermann

AbstractThe El Niño-Southern Oscillation (ENSO), the primary driver of year-to-year global climate variability, is known to influence the North Tropical Atlantic (NTA) sea surface temperature (SST), especially during boreal spring season. Focusing on statistical lead-lag relationships, previous studies have proposed that interannual NTA SST variability can also feed back on ENSO in a predictable manner. However, these studies did not properly account for ENSO’s autocorrelation and the fact that the SST in the Atlantic and Pacific, as well as their interaction are seasonally modulated. This can lead to misinterpretations of causality and the spurious identification of Atlantic precursors for ENSO. Revisiting this issue under consideration of seasonality, time-varying ENSO frequency, and greenhouse warming, we demonstrate that the cross-correlation characteristics between NTA SST and ENSO, are consistent with a one-way Pacific to Atlantic forcing, even though the interpretation of lead-lag relationships may suggest otherwise.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1135
Author(s):  
Carolyn Payus ◽  
Lim Ann Huey ◽  
Farrah Adnan ◽  
Andi Besse Rimba ◽  
Geetha Mohan ◽  
...  

For countries in Southeast Asia that mainly rely on surface water as their water resource, changes in weather patterns and hydrological systems due to climate change will cause severely decreased water resource availability. Warm weather triggers more water use and exacerbates the extraction of water resources, which will change the operation patterns of water usage and increase demand, resulting in water scarcity. The occurrence of prolonged drought upsets the balance between water supply and demand, significantly increasing the vulnerability of regions to damaging impacts. The objectives of this study are to identify trends and determine the impacts of extreme drought events on water levels for the major important water dams in the northern part of Borneo, and to assess the risk of water insecurity for the dams. In this context, remote sensing images are used to determine the degree of risk of water insecurity in the regions. Statistical methods are used in the analysis of daily water levels and rainfall data. The findings show that water levels in dams on the North and Northeast Coasts of Borneo are greatly affected by the extreme drought climate caused by the Northeast Monsoon, with mild to the high risk recorded in terms of water insecurity, with only two of the water dams being water-secure. This study shows how climate change has affected water availability throughout the regions.


2014 ◽  
Vol 60 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Federico Marrone ◽  
Murtada D. Naser ◽  
Gh. Yasser Amaal ◽  
Francesco Sacco ◽  
Marco Arculeo

Author(s):  
Robert Fritzen ◽  
Victoria Lang ◽  
Vittorio A. Gensini

AbstractExtratropical cyclones are the primary driver of sensible weather conditions across the mid-latitudes of North America, often generating various types of precipitation, gusty non-convective winds, and severe convective storms throughout portions of the annual cycle. Given ongoing modifications of the zonal atmospheric thermal gradient due to anthropogenic forcing, analyzing the historical characteristics of these systems presents an important research question. Using the North American Regional Reanalysis, boreal cool-season (October–April) extratropical cyclones for the period 1979–2019 were identified, tracked, and classified based on their genesis location. Additionally, bomb cyclones—extratropical cyclones that recorded a latitude normalized pressure fall of 24 hPa in 24-hr—were identified and stratified for additional analysis. Cyclone lifespan across the domain exhibits a log-linear relationship, with 99% of all cyclones tracked lasting less than 8 days. On average, ≈ 270 cyclones were tracked across the analysis domain per year, with an average of ≈ 18 year−1 being classified as bomb cyclones. The average number of cyclones in the analysis domain has decreased in the last 20 years from 290 year−1 during the period 1979–1999 to 250 year−1 during the period 2000–2019. Spatially, decreasing trends in the frequency of cyclone track counts were noted across a majority of the analysis domain, with the most significant decreases found in Canada’s Northwest Territories, Colorado, and east of the Graah mountain range. No significant interannual or spatial trends were noted with bomb cyclone frequency.


2015 ◽  
Vol 15 (17) ◽  
pp. 10087-10092 ◽  
Author(s):  
L. Kattner ◽  
B. Mathieu-Üffing ◽  
J. P. Burrows ◽  
A. Richter ◽  
S. Schmolke ◽  
...  

Abstract. In 1997 the International Maritime Organisation (IMO) adopted MARPOL Annex VI to prevent air pollution by shipping emissions. It regulates, among other issues, the sulfur content in shipping fuels, which is transformed into the air pollutant sulfur dioxide (SO2) during combustion. Within designated Sulfur Emission Control Areas (SECA), the sulfur content was limited to 1 %, and on 1 January 2015, this limit was further reduced to 0.1 %. Here we present the set-up and measurement results of a permanent ship emission monitoring site near Hamburg harbour in the North Sea SECA. Trace gas measurements are conducted with in situ instruments and a data set from September 2014 to January 2015 is presented. By combining measurements of carbon dioxide (CO2) and SO2 with ship position data, it is possible to deduce the sulfur fuel content of individual ships passing the measurement station, thus facilitating the monitoring of compliance of ships with the IMO regulations. While compliance is almost 100 % for the 2014 data, it decreases only very little in 2015 to 95.4 % despite the much stricter limit. We analysed more than 1400 ship plumes in total and for months with favourable conditions, up to 40 % of all ships entering and leaving Hamburg harbour could be checked for their sulfur fuel content.


Sign in / Sign up

Export Citation Format

Share Document