Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method

2017 ◽  
Vol 50 (39) ◽  
pp. 395204 ◽  
Author(s):  
Shou-Fu Tian
2021 ◽  
Vol 10 (1) ◽  
pp. 952-971
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Mokhtar Kirane ◽  
Berikbol T. Torebek

Abstract This paper is devoted to the study of initial-boundary value problems for time-fractional analogues of Korteweg-de Vries, Benjamin-Bona-Mahony, Burgers, Rosenau, Camassa-Holm, Degasperis-Procesi, Ostrovsky and time-fractional modified Korteweg-de Vries-Burgers equations on a bounded domain. Sufficient conditions for the blowing-up of solutions in finite time of aforementioned equations are presented. We also discuss the maximum principle and influence of gradient non-linearity on the global solvability of initial-boundary value problems for the time-fractional Burgers equation. The main tool of our study is the Pohozhaev nonlinear capacity method. We also provide some illustrative examples.


Author(s):  
Guillaume Michel Dujardin

This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate whether the solution becomes time-periodic after sufficiently long time. Using Fokas’ transformation method, we show that, for the linear Schrödinger equation, the linear heat equation and the linearized KdV equation on the half-line, the solutions indeed become periodic for large time. However, for the same linear Schrödinger equation on a finite interval, we show that the solution, in general, is not asymptotically periodic; actually, the asymptotic behaviour of the solution depends on the commensurability of the time period T of the boundary data with the square of the length of the interval over π .


Sign in / Sign up

Export Citation Format

Share Document