scholarly journals Removal of COD from petroleum refinery wastewater using electrocoagulation method

2021 ◽  
Vol 877 (1) ◽  
pp. 012046
Author(s):  
Amal H. Khalil ◽  
Mohammed A. Naji ◽  
Salam M. Naser

Abstract This research assessed the removability of chemical oxygen demand (COD) from petroleum effluent using aluminum-based electrocoagulation reactor. A series of batch flow studies have been conducted to evaluate the impact of current density, electrodes separation, and duration of treatment on the removal of COD from the refinery effluent. The COD levels were determined employing the remaining concentrations using spectrophotometer namely Hach-Lang and standard cuvette test (LCC 514, LCK 314, or APC 400). The findings of the current investigation indicate the capacity of the electrocoagulation technique in a relatively short processing time to reduce the COD levels. The greatest efficiency in removing COD has been determined to be 80.0%. After 100 minutes of electrolysis, a current density of 8 mA/cm2 and electrodes separation of 20 mm achieved the highest percentage removal.

Author(s):  
Bineeta Singh ◽  
Ashok K. Verma ◽  
Pradeep Kumar

AbstractCatalytic thermolysis of petroleum refinery wastewater was investigated as a pretreatment process. Effects of various parameters like temperature, pH, dose of catalyst and time were investigated for chemical oxygen demand (COD), turbidity, and element reduction. CuSO4, FeSO4, FeCl3, and 1:1 ratio (v:v) mixture of CuSO4 and FeCl3 were used as a catalyst. The maximum reduction of COD and turbidity were 90 and 98% by mixture (1:1) of CuSO4 and FeCl3 at 70 °C, 7 pH, 1.0 kg/m3 dose in 90 min reaction time. The removal of an element like Cr, Mn, Ni, and Pb was analyzed by ICP-OES. The sludge precipitated after catalytic thermolysis was characterized using scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), Fourier transform infrared (FTIR) and thermo-gravimetric analysis (TGA)/derivative thermal analysis (DTA) analyses. Sludge from CuSO4 and mixture of CuSO4 and FeCl3 treatment has a compact structure with irregular granule which favors adsorption.


2013 ◽  
Vol 67 (9) ◽  
pp. 1976-1983 ◽  
Author(s):  
Mang Lu ◽  
Li-Peng Gu ◽  
Wen-Hao Xu

In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic–aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic–aerobic MBBR system was varied from 72 to 18 h. The anaerobic–aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic–aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Javad Saien ◽  
Fatemeh Shahrezaei

A real petroleum refinery wastewater, containing a range of aliphatic and aromatic organic compounds, was treated using nanotitania particles, as the photocatalyst in UV/TiO2process. Samples were collected from the inlet point of the biological treatment unit. A conic-shape, circulating, and upward mixing reactor, without dead zone, was employed. The light source was an immersed mercury UV lamp (400 W, 200–550 nm). Optimal suspended catalyst concentration, fluid pH, and temperature were obtained at amounts of near 100 mg·L−1, 3 and 45°C, respectively. A maximum reduction in chemical oxygen demand (COD) of more than 78% was achieved after about 120 min and, hence, 72% after only 90 min. Significant pollutant degradation was also relevant under other conditions. The identification analysis of the organic pollutants, provided by means of a GC/MS, equipped with headspace injection technique, showed that different petroleum compounds were degraded with high efficiencies.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 835
Author(s):  
Sharon Chakawa ◽  
Mujahid Aziz

Electrochemical oxidation (EO) investigated chemical oxygen demand (COD) subtraction from petroleum refinery wastewater (PRW) as a capable remediation process. Titanium substrates coated with iridium–tantalum oxide mixtures (Ti/IrO2–Ta2O5) were used as the dimensional stable anode (DSA). The Box-Behnken Design (BBD), a statistical experimental design and response surface methodology (RSM), was used to matrix the current density, temperature, and electrolyte (NaCl) concentration variables, with COD removal efficiency as the response factor. A second-order verifiable relationship between the response and independent variables was derived where the analysis of variance displayed a high coefficient of determination value (R2 = 0.9799). The predicted values calculated with the model equations were very close to the experimental values where the model was highly significant. Based on the BBD for current density, the optimum process conditions, temperature and electrolyte (NaCl) concentration were 7.5 mA/cm2, 42 °C and 4.5 g/L, respectively. They were resulting in a COD removal efficiency of 99.83% after a 12-hour EO period.


2015 ◽  
Vol 10 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Reza Davarnejad ◽  
Masoud Pirhadi ◽  
Mohsen Mohammadi ◽  
Shahrzad Arpanahzadeh

Abstract The important parameters in mineralization treatment of petroleum refinery wastewater by electro-Fenton process were successfully simulated by Computational Fluid Dynamics (CFD). The effects of H2O2/PRW (ratio of mole of H2O2 per petroleum refinery wastewater volume), H2O2/Fe2+ molar ratio, current density, pH and reaction time were numerically investigated. Materials distribution in the electrochemical cell was studied and CFD results demonstrated that distance between electrodes had no significant effect on the Chemical oxygen demand (COD) removal. Furthermore, the results were compared with the experimental data. The simulated data showed that maximum COD removal was around 82.55% at H2O2/PRW of 0.04, H2O2/Fe2+ molar ratio of 2.75, pH of 3.5, current density of 52.5 mA/cm2 and reaction time of 90 min while the experimental data obtained from the literature showed maximum COD removal of 77% in the same operating conditions. The simulated data showed a good agreement with the experimental ones.


Author(s):  
Hayder Gasim ◽  
Abdur Rahman Megat Mohamed Amin Megat ◽  
Rahman Mohamed Kutty Shamsul

The petroleum refinery wastewater biological treatment is widely investigated because of the potential complete mineralization and environmental aspect. In this study, petroleum refinery wastewater was treated in an extended aeration activated sludge (EAAS) reactor A, operated in parallel with EAAS reactor B as a control, fed with municipal wastewater. The chemical oxygen demand (COD) organic loading rate (OLR) of the refinery wastewater in reactor B was approximately 0.057 kg COD/m3·d compared to reactor A of 0.004 kg COD/m3·d throughout the study period. The flowrate for both reactors was maintained at 21.4 L/day. Food to microorganism (F/M) ratio, COD, mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids (MLVSS) were monitored throughout the study period. The result indicated high removal efficiency of organic matter of approximately 87% as COD with 2582 mg/L of the petroleum refinery wastewater as influent and 140 mg/L as effluent.


1989 ◽  
Vol 24 (3) ◽  
pp. 463-477
Author(s):  
Stephen G. Nutt

Abstract Based on discussions in workshop sessions, several recurring themes became evident with respect to the optimization and control of petroleum refinery wastewater treatment systems to achieve effective removal of toxic contaminants. It was apparent that statistical process control (SPC) techniques are finding more widespread use and have been found to be effective. However, the implementation of real-time process control strategies in petroleum refinery wastewater treatment systems is in its infancy. Considerable effort will need to be expended to demonstrate the practicality of on-line sensors, and the utility of automated process control in petroleum refinery wastewater treatment systems. This paper provides a summary of the discussions held at the workshop.


1989 ◽  
Vol 24 (3) ◽  
pp. 435-450 ◽  
Author(s):  
J.P. Stephenson

Abstract Several online analytical instruments are commercially available to allow continuous monitoring of petroleum industry wastewater treatment plants. Satisfactory usage of these instruments requires -special attention for sample preconditioning and sample characterization prior to selection. Specific examples of the available instruments are provided. Effective maintenance of instruments is emphasized.


Sign in / Sign up

Export Citation Format

Share Document