scholarly journals The potential of biomass waste in Malaysian palm oil industry: A case study of Boustead Plantation Berhad

2021 ◽  
Vol 1192 (1) ◽  
pp. 012028
Author(s):  
N H S Jafri ◽  
D N Jimat ◽  
N F M Azmin ◽  
S Sulaiman ◽  
Y A Nor

Abstract The oil palm industry is known as the primary producer of biomass in Malaysia. The massive production of oil palm biomass has resulted in a significant waste disposal problem. This study aims to assess the potential of waste derived from oil palm plantations and processing mills to be transformed into value-added products for various applications. The study was conducted on three oil palm estates managed by Boustead Rimba Nilai Berhad using data on the generation rates of fresh fruit bunches (FFB), crude palm oil (CPO), and oil palm biomass waste from 2018 to 2020. The availability of FFB, CPO, empty fruit bunches (EFB) and excess fibers, and palm oil mill effluents (POME) in 2030 was predicted using a forecasting approach, with trend analysis as the tool of choice. From 2018 to 2020, the output of FFB, EFB and excess fibers, as well as POME grew by 16%, 14%, 23%, and 14% respectively. Based on trend analysis, the projection of FFB, CPO, EFB and excess fibers, and POME outputs in 2030 is expected to be 80%, 56%, 92%, and 56% respectively, which are greater than the figures recorded in 2020. The state of the palm oil industry in Malaysia was described in this study and also highlighted the potential of oil palm biomass in various industries and as a source of green energy. Oil palm biomass can be commercialized in a wide range of value-added products.

2018 ◽  
Vol 34 ◽  
pp. 01008
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mostafa Samadi ◽  
Abdul Rahman Mohd. Sam ◽  
Nur Hafizah Abd Khalid ◽  
Noor Nabilah Sarbini ◽  
...  

This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.


2016 ◽  
Vol 82 (2) ◽  
Author(s):  
. ALHIDAYATULLAH ◽  
Lisdar I SUDIRMAN1 ◽  
Okky Setyawati DHARMAPUTRA

Abstract  Oil palm empty fruit bunches (OPEFB) are the ligno-cellulosic wastes from palm oil processing. They can be used to produce raw materials for value-added products. The purpose of this study was to determine the degradation capacity of JPA wood rot fungi and Trichoderma sp. S2-2 on OPEFB. The 500 g of substrates consisted of 81% of OPEFB, 15% bran, 1.5% lime and 1.5% gypsum were used for growing. The substrates were inoculated with five treatments i.e without isolate (K); with JPA isolate (JPA); with Trichoderma sp. S2-2 (T); with the two isolates (JPA + T); and with JPA isolate and after four weeks of incubation inoculated with Trichoderma sp. S2-2 [(JPA)+T]. All treatments were incubated for eight weeks. The results showed that JPA+T was the best treatment which the two isolates must be inoculated simultaneously for degradation of OPEFB. Lignin and cellulose content on JPA+T treatment respectively were 20.83% and 33.77%. C/N ratio of OPEFB degraded with JPA+T was lower than the C/N ratio of TKKS degraded with Trichoderma harzianum and TKKS degraded with EM4 in previous study. AbstrakTandan kosong kelapa sawit (TKKS) merupakan limbah lignoselulosa dari pengolahan minyak kelapa sawit. TKKS dapat dimanfaatkan untuk memperoleh bahan baku untuk produk bernilai tambah. Tujuan penelitian ini adalah untuk mengetahui kemampuan degradasi jamur pelapuk kayu isolat JPA dan Trichoderma sp. S2-2 pada TKKS. Sebanyak 500 g substrat terdiri dari 81% TKKS, 15% dedak, 1,5% kapur, dan 1,5% gypsum digunakan untuk per-tumbuhan. Substrat diinokulasi dengan lima perlakuan yaitu tanpa isolat (K); dengan isolat JPA (JPA); dengan Trichoderma sp. S2-2 (T); dengan isolat JPA dan setelah empat minggu inkubasi, diinokulasi dengan Trichoderma sp. S2-2 [(JPA+T)]. Semua perlakuan diinkubasi selama delapan minggu. Hasil percobaan menunjukkan bahwa perlakuan JPA+T adalah perlakuan terbaik yaitu kedua isolat tesebut harus diinokulasi secara bersamaan untuk mendegradasi TKKS. Kandungan lignin dan selulosa TKKS dengan  perlakuan  JPA+T   masing-masing  adalah  20,83% dan 33,77%. Rasio C/N TKKS hasil degradasi dengan JPA+T lebih  rendah  daripada  rasio C/N pada TKKS yang didegradasi dengan Trichoderma harzianum dan TKKS yang didegradasi dengan EM4 pada penelitian sebelumnya.


2014 ◽  
Vol 554 ◽  
pp. 266-270 ◽  
Author(s):  
Farid Nasir Ani ◽  
Arshad Adam Salema ◽  
Ismail Hasan

Pyrolysis is one of the effective ways to convert biomass into energy and value added products. Till date, no comparative study has been done on the characteristic of bio-oils of oil palm shell (OPS) and empty fruit bunch (EFB) from various fast pyrolysis techniques. This includes fluidized bed, fixed bed, rotating cone, microwave and others. Thus, the main objective of this paper was to analyze the characteristics of OPS and EFB bio-oils obtained from these processing techniques. Temperature was found to be the key parameter for the quality of bio-oils. Besides the various pyrolysis techniques, the lignocellulosic constituents of oil palm biomass also influence the chemical composition of the bio-oils. Overall, chemical analysis of OPS and EFB bio-oil through GC-MS has shown variation in the amount of phenol and its derivatives.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 356 ◽  
Author(s):  
Farhatun Najat Maluin ◽  
Mohd Zobir Hussein ◽  
Abu Seman Idris

The increase in the world’s oil demand due to the rise of the global population urges more research into the production of sustainable vegetable oilseeds, among which palm oil is the most suitable candidate as it is the most efficient oilseed crop in the world. In an effort to drive the oil palm industry in the areas of food safety and security nanotechnology could offer a sustainable alternative. However, the utilization of nanotechnology in the oil palm industry is still limited. In this review, we aim to encourage the researchers to fully utilize nanotechnology as an alternative solution to tackle the challenges faced by the oil palm industry. Moreover, we also aim to highlight the opportunities for nanotechnology development in oil palm-based related research. The major points are as follows: (1) Nanosensing enables real-time monitoring of plantation status and crop progression, including soil, water and nutrient management, early pest/disease detection, and the spreading of pests/diseases. The use of nanosensing conveniently extends into advanced breeding topics, such as the development of disease-tolerant plants; (2) Nanotechnology could be the answer for the development of integrated management of pest and disease. Active agricultural ingredients can be entrapped or encapsulated into nanocarrier systems to improve their solubility, stability, enhance their efficient delivery to site-specific targets, with longer shelf life, and consequently improved efficacy; (3) Valuable nanomaterials can be isolated and generated from oil palm biomass waste. The utilization of oil palm biomass waste could overcome the issue of the massive production of waste in the oil palm industry and palm oil mills, where oil only accounts for 10% of the biomass, while 90% is comprised of the generated biowastes. (4) Palm oil can be utilized as a green alternative as a capping and stabilizing agent in the biosynthesis of metallic and non-metallic nanoparticles. In addition, nanoemulsion formulations using palm oil in drug delivery systems offer advantages such as low toxicity, enhance bioavailability and solubility of the drugs, apart from being inexpensive and environmentally friendly.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012001
Author(s):  
Chee Yau Hew ◽  
Li Wan Yoon ◽  
Yoke Kin Wan

Abstract The huge amount of biomass waste and palm oil mill effluent (POME) generated during oil extraction has prompted the need for a more sustainable framework in waste management. Since oil palm biomass waste is rich in lignocellulosic content, it can be potential to be converted into green energy such as bioelectricity via different pathway of processes such as the thermal conversion pathway and biochemical conversion pathway. This study proposes a mathematical approach to synthesise a sustainable supply chain of biomass to electricity by implementing the combined heat and power (CHP) system in palm oil mill. The optimum pathway of supply chain based on the technical, economical, and environmental aspects is generated. The purpose of this approach is to assists the industry players or owners to make decision in choosing the location of the pre-treatment technology, transportation method, location of power plant and configuration of CHP. A generic superstructure is first developed to achieve the objective. Then, a series of generic mathematical equations will then be formulated based on the pathways demonstrated in the generic superstructure. The mathematical equations involve general mass and energy balance, cost computation and carbon emission. The fuzzy optimisation concept will be adopted in this research to trade-off the conflicting objectives (maximize profit and minimize carbon footprint) in order to generate the optimum pathway. A palm oil-based bioelectricity supply chain case study in Selangor, Malaysia is solved to illustrate the presented approach. According to the optimised result in this case study, a total of 3,753.36 MW of bioelectricity can be generated per year. The result proved that the optimum pathway is feasible by comparing with the existing oil palm biomass-based power plant in Sarawak, where only 375 MW of electricity is generated by oil palm biomass. On the other hand, RM 7.25 million per year of net profit is estimated with a payback period of 2.81 years. Moreover, the CHP system is able to achieve 570 million kg CO2 per year.


2016 ◽  
Vol 82 (2) ◽  
Author(s):  
. ALHIDAYATULLAH ◽  
Lisdar I SUDIRMAN1 ◽  
Okky Setyawati DHARMAPUTRA

Abstract  Oil palm empty fruit bunches (OPEFB) are the ligno-cellulosic wastes from palm oil processing. They can be used to produce raw materials for value-added products. The purpose of this study was to determine the degradation capacity of JPA wood rot fungi and Trichoderma sp. S2-2 on OPEFB. The 500 g of substrates consisted of 81% of OPEFB, 15% bran, 1.5% lime and 1.5% gypsum were used for growing. The substrates were inoculated with five treatments i.e without isolate (K); with JPA isolate (JPA); with Trichoderma sp. S2-2 (T); with the two isolates (JPA + T); and with JPA isolate and after four weeks of incubation inoculated with Trichoderma sp. S2-2 [(JPA)+T]. All treatments were incubated for eight weeks. The results showed that JPA+T was the best treatment which the two isolates must be inoculated simultaneously for degradation of OPEFB. Lignin and cellulose content on JPA+T treatment respectively were 20.83% and 33.77%. C/N ratio of OPEFB degraded with JPA+T was lower than the C/N ratio of TKKS degraded with Trichoderma harzianum and TKKS degraded with EM4 in previous study. AbstrakTandan kosong kelapa sawit (TKKS) merupakan limbah lignoselulosa dari pengolahan minyak kelapa sawit. TKKS dapat dimanfaatkan untuk memperoleh bahan baku untuk produk bernilai tambah. Tujuan penelitian ini adalah untuk mengetahui kemampuan degradasi jamur pelapuk kayu isolat JPA dan Trichoderma sp. S2-2 pada TKKS. Sebanyak 500 g substrat terdiri dari 81% TKKS, 15% dedak, 1,5% kapur, dan 1,5% gypsum digunakan untuk per-tumbuhan. Substrat diinokulasi dengan lima perlakuan yaitu tanpa isolat (K); dengan isolat JPA (JPA); dengan Trichoderma sp. S2-2 (T); dengan isolat JPA dan setelah empat minggu inkubasi, diinokulasi dengan Trichoderma sp. S2-2 [(JPA+T)]. Semua perlakuan diinkubasi selama delapan minggu. Hasil percobaan menunjukkan bahwa perlakuan JPA+T adalah perlakuan terbaik yaitu kedua isolat tesebut harus diinokulasi secara bersamaan untuk mendegradasi TKKS. Kandungan lignin dan selulosa TKKS dengan  perlakuan  JPA+T   masing-masing  adalah  20,83% dan 33,77%. Rasio C/N TKKS hasil degradasi dengan JPA+T lebih  rendah  daripada  rasio C/N pada TKKS yang didegradasi dengan Trichoderma harzianum dan TKKS yang didegradasi dengan EM4 pada penelitian sebelumnya.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9935-9997
Author(s):  
Rushan Diyanilla ◽  
Tuan Sherwyn Hamidon ◽  
Lisman Suryanegara ◽  
M. Hazwan Hussin

Oil palm biomass is readily available in Malaysia. However, its high lignin content makes it undesirable for further processing. Pretreatment is employed to reduce the amount of lignin. Many resources exist on pretreatment methods for lignocellulosic biomass, but there are few articles specifically on oil palm biomass. Therefore, this review focuses on pretreatment methods for oil palm biomass, comparing their main strengths and limitations. Furthermore, this review tabulates different pretreatment conditions utilized, combinations of pretreatment methods, the resulting yields, and the potential applicability in producing value-added products. Because the main limitation of pretreatment is the formation of toxic compounds such as furfural and hydroxymethylfurfural, this review also discusses chemical detoxification methods for oil palm biomass residues. According to this review, among all types of oil palm biomass, oil palm empty fruit brunch is the most widely studied, and alkaline pretreatment is the most popular of all pretreatment methods. Combination of pretreatment methods is suitable for biomass with greater lignin content, to increase delignification efficiency. Furthermore, a combination of overliming and activated carbon treatment removes the maximum amount of toxic by-products.


2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Subiyanto Subiyanto

Palm oil industry in Indonesia has been growing rapidly. But, unfortunately the growth is only effective on upstream industry with low value products, such that potential downstream value added are not explored proportionally. The government is therefore in the process of developing an appropriate policy to strengthen the national palm oil downstream industry. This paper proposes that an approriate policy for developing palm oil downstream industry could be derived from the maps of value chain and existing technology capability of the industry. The result recommends that government policy should emphasize on the supply of raw materials, infrastructure and utilities, as well as developing the missing value chain industry, especially ethoxylation and sulfonation.


Sign in / Sign up

Export Citation Format

Share Document