scholarly journals Influence of DAD-TA temperature-reducing additive on physical and mechanical properties of bitumen and compaction of asphalt concrete.

Author(s):  
V V Yadykina ◽  
A E Akimov ◽  
A I Trautvain ◽  
V S Kholopov
2021 ◽  
Vol 1043 ◽  
pp. 101-107
Author(s):  
Natalia Yatsenko ◽  
Alexandr Evforitsky ◽  
Natalya Kotenko

The possibility of using waste porcelain stoneware - a high-strength non-porous, dense material as a finely crushed mineral part of asphalt concrete with 0-5 mm fraction has been established. The adhesive additive Bitaden content was revealed, that intensifies porcelain stoneware interaction with bitumen due to the additional hydrogen bonds formation, the particles’ contact plane activation with the action of van der Waals forces. The conditions for obtaining asphalt concrete mixtures of type B, grade 1 and G, grade 2 of the optimal grain composition with a reduced content of BND 60/90 bitumen have been developed. Physical and mechanical properties are characterized by an increase in the water resistance of asphalt concrete samples based on porcelain stoneware, compressive strength and shear resistance.


2021 ◽  
Vol 2021 ◽  
pp. 117-128
Author(s):  
Artur Onyshchenko ◽  
◽  
Mykola Garkusha ◽  
Oleksandr Fedorenko ◽  
Yevgen Plazii ◽  
...  

Introduction. Increasing the load on highways and constantly increasing the intensity of traffic requires the use of road construction materials with improved physical and mechanical properties. Asphalt concrete is one of the most common and effective materials, which allows to provide the necessary strength and durability of the pavement structure. However, the use of traditional materials for its preparation - mineral material and road bitumen has a limited resource, which does not always meet traffic conditions. Modern scientific research in materials science allows to use mixtures of asphalt concrete and asphalt concrete road with the use of basalt fiber.Apply mixtures of asphalt concrete and asphalt concrete road with the use of basalt fiber, allows to increase the mechanical characteristics - tensile strength and resistance to fatigue from repeated loads, which increases the crack resistance of asphalt concrete layers of pavement structures, as well as increases resistance to shape change. accumulation of residual deformations.Problem Statement. From the literature analysis it is established that the coating of non-rigid pavement is in difficult operating conditions, which is confirmed by the intensive growth of defects in the form of tracks, landslides, inflows, cracks, due to increasing parameters of transport loads and high summer temperatures, so there is a need new materials.Purpose. Is to study the impact of the effectiveness of asphalt concrete reinforced with basalt fiber.Results. The results of physical and mechanical properties of asphalt concretes with the use of basalt fiber are obtained. The results of formation of residual deformations in the form of track in asphalt concrete with the use of basalt fiber are obtained. As a result of the conducted researches the analysis of efficiency of application of basalt fiber in asphalt concrete mix is executed.On the basis of the carried-out researches the basic requirements to asphalt concrete mix with use of basalt fiber are establishedConclusions. The research results were used in the development of regulations for the design, construction and repair of asphalt layers of roads in Ukraine.Keywords: asphalt concrete road with basalt fiber, asphalt concrete mixes with basalt fiber, loading, covering, stability, temperature.


Author(s):  
Андронов ◽  
Sergey Andronov

Asphalt concrete exposed to cracking, flaking, chipping, formation of ruts, waves and troughs. Introduction into a mixture of small size (discrete) components allows achieving their uniform distribution (dispersion) in the mixture and obtain a "composite" material having a high physical and mechanical properties in the finished structural member. Studied technology of composite dispersion-reinforced with basalt fibers asphalt mixtures, taking into account the influence of temperature.


2021 ◽  
Vol 9 (3) ◽  
pp. 26-30
Author(s):  
Alexander Evforitsky ◽  
Natalia Yatsenko ◽  
Lilia Popova

The results of research are presented when replacing finely crushed mineral part of asphalt concrete with waste from the production of porcelain stoneware, which is a product of high-temperature firing of a mixture of refractory clay raw materials and feldspar rocks, which provides high physical and mechanical properties of waste and further road surface.


2020 ◽  
Vol 1 (11-12) ◽  
pp. 47-49
Author(s):  
N. P. Kotenko ◽  
Yu. S. Shcherba ◽  
A. S. Evforitskiy

The possibility of modifying the oil road bitumen of the BND 70/100 grade is investigated; it belongs to the category of viscous bitumen and is used for road works in the warm season, with an average daily temperature not lower than +5°C. The material is widely used for repair work, and for laying new roads. Copolymers of styrene with butadiene and ethylene with vinyl acetate were used as polymeric materials for polymer-bitumen binders (PBV). Their optimal concentrations were determined for obtaining PBV with increased heat resistance and elasticity. Carbon nanotubes were used as a functional additive to bitumen.. The physical and mechanical properties of modifi ed bitumen and asphalt concrete mixtures based on them are given. It was shown that the introduction of even a small amount of nanotubes into asphalt concrete leads to an increased shear stability and strength at diff erent temperatures from 0 to 50°C.


2019 ◽  
Vol 18 (4) ◽  
pp. 269-273
Author(s):  
Ya. N. Kovalev ◽  
D. Yu. Alexandrov

A problem of efficient resource usage in road branch continues to be one of the most complicated issues and requires an intensification in investigation process pertaining to possibilities for production of road construction materials of low resource intensity with high physical and mechanical properties. Technogenic wastes of the Belarusian enterprises are rather various and they need a detailed investigation. Application of such methods as IR spectrometry, probe microscopy, study of of geometric characteristics of particles and fibers make it possible to determine more active centres and reveal micro-defects that influence on strength of adhesion bond at the boundary of “fiber – binder” and physical and mechanical properties of ready-mixed asphalt concrete. Nature of basalt fiber presupposes mainly physical character of adhesion interaction at the boundary of phase separation. An increase of technogenic waste activity to enhance adhesion contacts up to chemisorption level is possible only due to preliminary fiber processing which includes cleaning, removal of foreign inclusions, etching, drying, probable sorting-out and fluffing. Industrial approbation of such technological process is not possible without development of a corresponding module or a plant. Disperse reinforment causes changes in composition and technology of sand asphalt concrete. An increase in specific surface of an aggregate, necessity of uniform distribution of fiber in terms of volume determine the required need in a binder, procedure and regimes for component mixing. Grain composition of the aggregate can be represented by crush screening and natural sand of mixture of these materials. Requirements to properties of sand disperse-reinforced asphalt concrete are formed on the basis of operational conditions and layer arrangement of the material in the design of a surface dressing. The disperse-reinforced sand asphalt concrete can perform functions of a superfine protective layer, a levelling layer or a crack stopping layer which is resistant to fatigue crack formation.


Sign in / Sign up

Export Citation Format

Share Document