scholarly journals Whitmore Section and Block Shear Failure Analysis on a Bolted Gusset Plate using Finite Element Method

Author(s):  
Yoses Riadi ◽  
Leo S Tedianto
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1088
Author(s):  
Marta Kuříková ◽  
David Sekal ◽  
František Wald ◽  
Nadine Maier

This paper presents the behaviour and design procedure of bolted connections which tend to be sensitive to block shear failure. The finite element method is employed to examine the block shear failure. The research-oriented finite element method (RFEM) model is validated with the results of experimental tests. The validated model is used to verify the component-based FEM (CBFEM) model, which combines the analysis of internal forces by the finite element method and design of plates, bolts and welds by the component method (CM). The CBFEM model is verified by an analytical solution based on existing formulas. The method is developed for the design of generally loaded complicated joints, where the distribution of internal forces is complex. The resistance of the steel plates is controlled by limiting the plastic strain of plates and the strength of connectors, e.g., welds, bolts and anchor bolts. The design of plates at a post-critical stage is available to allow local buckling of slender plates. The prediction of the initial stiffness and the deformation capacity is included natively. Finally, a sensitivity study is prepared. The studied parameters include gusset plate thickness and pitch distance.


2008 ◽  
Vol 46 (7-9) ◽  
pp. 898-904 ◽  
Author(s):  
Tomonori Kaneko ◽  
Sadayuki Ujihashi ◽  
Hidetoshi Yomoda ◽  
Shusuke Inagi

Sign in / Sign up

Export Citation Format

Share Document