scholarly journals Effect of Activating Flux (Metal Oxide) on the Weld Bead Nomenclature of Tungsten Inert Gas Welding Process – A Review

Author(s):  
G Chandrasekar ◽  
R Kannan ◽  
M P Prabakaran ◽  
R Ganesamoorthy
2017 ◽  
Vol 885 ◽  
pp. 190-195 ◽  
Author(s):  
Amanda Silveira Alcantara ◽  
Enikő Réka Fábián ◽  
Monika Furkó ◽  
Éva Fazakas ◽  
János Dobránszky ◽  
...  

The aim of this work was to analyze the performance of joints made by TIG (Tungsten Inert Gas) welding process in austenitic and duplex stainless steels with special regards to their corrosion resistance. Three different types of stainless steel were butt welded with TIG method. Ferric-chloride test and electrochemical treatments revealed how does the TIG process affects the corrosion resistance depending upon the alloy used for welding the joint. This work focuses on the weldability of the 2304, 2404 and 304 type stainless steel heterogeneous welds.


CORROSION ◽  
10.5006/3066 ◽  
2019 ◽  
Vol 75 (4) ◽  
pp. 408-416 ◽  
Author(s):  
Gang Chen ◽  
Yucheng Lei ◽  
Qiang Zhu ◽  
Tianqing Li ◽  
Dan Wang ◽  
...  

2019 ◽  
Vol 24 (7) ◽  
pp. 609-616 ◽  
Author(s):  
Aiguo Liu ◽  
Xingpin Zhang ◽  
Chengbo Zheng ◽  
Xue Han

Author(s):  
Akash Deep ◽  
Vivek Singh ◽  
Som Ashutosh ◽  
M. Chandrasekaran ◽  
Dixit Patel

Abstract Austenitic stainless steel (ASS) is widely fabricated by tungsten inert gas (TIG) welding for aesthetic look and superior mechanical properties while compared to other arc welding process. Hitherto, the limitation of this process is low depth of penetration and less productivity. To overcome this problem activated tungsten inert gas (A-TIG) welding process is employed as an alternative. In this investigation the welding performance of conventional TIG welding is compared with A-TIG process using TiO2 and SiO2 flux with respect to weld bead geometry. The experimental investigation on A-TIG welding of ASS-201 grade shows TiO2 flux helps in achieve higher penetration as compared to SiO2 flux. While welding with SiO2 the hardness in HAZ and weld region higher than that of TIG welding process.


Author(s):  
Prasad Manorathna ◽  
Sundar Marimuthu ◽  
Laura Justham ◽  
Michael Jackson

Tungsten inert gas welding is extensively used in aerospace applications due to its unique ability to produce higher quality welds compared to other conventional arc welding processes. However, most tungsten inert gas welding is performed manually, and it has not achieved the required level of automation. This is mostly attributed to the lack of process knowledge and adaptability to complexities, such as mismatches due to part fit-up and thermal deformations associated with the tungsten inert gas welding process. This article presents a novel study on quantifying manual tungsten inert gas welding, which will ultimately help intelligent automation of tungsten inert gas welding. Through tungsten inert gas welding experimentation, the study identifies the key process variables, critical tasks and strategies adapted by manual welders. Controllability of welding process parameters and human actions in challenging welding situations were studied both qualitatively and quantitatively. Results show that welders with better process awareness can successfully adapt to variations in the geometry and the tungsten inert gas welding process variables. Critical decisions taken to achieve such adaptations are mostly based on visual observation of the weld pool. Results also reveal that skilled welders prioritise a small number of process parameters to simplify the dynamic nature of tungsten inert gas welding process so that part variation can be accommodated.


Sign in / Sign up

Export Citation Format

Share Document