𝑞-difference raising operators for Macdonald polynomials and the integrality of transition coefficients

Author(s):  
A. Kirillov ◽  
M. Noumi
2005 ◽  
Vol 73 (1) ◽  
pp. 71-81 ◽  
Author(s):  
Jun’ichi Shiraishi

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Charles F. Dunkl

In a preceding paper the theory of nonsymmetric Macdonald polynomials taking values in modules of the Hecke algebra of type A (Dunkl and Luque SLC 2012) was applied to such modules consisting of polynomials in anti-commuting variables, to define nonsymmetric Macdonald superpolynomials. These polynomials depend on two parameters q,t and are defined by means of a Yang–Baxter graph. The present paper determines the values of a subclass of the polynomials at the special points 1,t,t2,… or 1,t−1,t−2,…. The arguments use induction on the degree and computations with products of generators of the Hecke algebra. The resulting formulas involve q,t-hook products. Evaluations are also found for Macdonald superpolynomials having restricted symmetry and antisymmetry properties.


2008 ◽  
Vol 130 (2) ◽  
pp. 359-383 ◽  
Author(s):  
James. Haglund ◽  
Mark D. Haiman ◽  
N. Loehr

1981 ◽  
Vol 10 (1) ◽  
pp. 15-43 ◽  
Author(s):  
A. M. Garsia ◽  
J. Remmel

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intĂŠressons aux propriĂŠtĂŠs des polynĂ´mes de Macdonald symĂŠtriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spĂŠcialisation $t=q^k$. En particulier nous montrons une ĂŠgalitĂŠ reliant les polynĂ´mes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en dĂŠduisons la description d'un opĂŠrateur dont les valeurs propres caractĂŠrisent les polynĂ´mes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


10.37236/5350 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Maria Monks Gillespie

Using the combinatorial formula for the transformed Macdonald polynomials of Haglund, Haiman, and Loehr, we investigate the combinatorics of the symmetry relation $\widetilde{H}_\mu(\mathbf{x};q,t)=\widetilde{H}_{\mu^\ast}(\mathbf{x};t,q)$. We provide a purely combinatorial proof of the relation in the case of Hall-Littlewood polynomials ($q=0$) when $\mu$ is a partition with at most three rows, and for the coefficients of the square-free monomials in $\mathbf{x}$ for all shapes $\mu$. We also provide a proof for the full relation in the case when $\mu$ is a hook shape, and for all shapes at the specialization $t=1$. Our work in the Hall-Littlewood case reveals a new recursive structure for the cocharge statistic on words.


Sign in / Sign up

Export Citation Format

Share Document