scholarly journals The spectrum of a linear operator under perturbation by certain compact operators

1969 ◽  
Vol 22 (3) ◽  
pp. 667-667
Author(s):  
Kenneth K. Warner
1991 ◽  
Vol 110 (1) ◽  
pp. 143-145 ◽  
Author(s):  
Simon Wassermann

A C*-algebra A of operators on a separable Hilbert space H is said to be quasidiagonal if there is an increasing sequence E1, E2, … of finite-rank projections on H tending strongly to the identity and such thatas i → ∞ for T∈A. More generally a C*-algebra is quasidiagonal if there is a faithful *-representation π of A on a separable Hilbert space H such that π(A) is a quasidiagonal algebra of operators. When this is the case, there is a decomposition H = H1 ⊕ H2 ⊕ … where dim Hi < ∞ (i = 1, 2,…) such that each T∈π(A) can be written T = D + K where D= D1 ⊕ D2 ⊕ …, with Di∈L(Hi) (i = 1, 2,…), and K is a compact linear operator on H. As is well known (and readily seen), this is an alternative characterization of quasidiagonality.


1995 ◽  
Vol 38 (2) ◽  
pp. 261-276 ◽  
Author(s):  
M. Cwikel ◽  
N. J. Kalton

Let X = (X0, X1) and Y = (Y0, Y1) be Banach couples and suppose T:X→Y is a linear operator such that T:X0→Y0 is compact. We consider the question whether the operator T:[X0, X1]θ→[Y0, Y1]θ is compact and show a positive answer under a variety of conditions. For example it suffices that X0 be a UMD-space or that X0 is reflexive and there is a Banach space so that X0 = [W, X1]α, for some 0<α<1.


Author(s):  
Zied Garbouj

AbstractThe purpose of this paper is to present in linear spaces some results for new notions called A-left (resp., A-right) ascent and A-left (resp., A-right) descent of linear operators (where A is a given operator) which generalize two important notions in operator theory: ascent and descent. Moreover, if A is a positive operator, we obtain several properties of ascent and descent of an operator in semi-Hilbertian spaces. Some basic properties and many results related to the ascent and descent for a linear operator on a linear space Kaashoek (Math Ann 172:105–115, 1967), Taylor (Math Ann 163:18–49, 1966) are extended to these notions. Some stability results under perturbations by compact operators and operators having some finite rank power are also given for these notions.


2020 ◽  
Vol 16 (01) ◽  
pp. 177-193
Author(s):  
Mami Sharma ◽  
Debajit Hazarika

In this paper, we first investigate the relationship between various notions of fuzzy boundedness of linear operators in fuzzy normed linear spaces. We also discuss the fuzzy boundedness of fuzzy compact operators. Furthermore, the spaces of fuzzy compact operators have been studied.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


Author(s):  
Radu Boţ ◽  
Guozhi Dong ◽  
Peter Elbau ◽  
Otmar Scherzer

AbstractRecently, there has been a great interest in analysing dynamical flows, where the stationary limit is the minimiser of a convex energy. Particular flows of great interest have been continuous limits of Nesterov’s algorithm and the fast iterative shrinkage-thresholding algorithm, respectively. In this paper, we approach the solutions of linear ill-posed problems by dynamical flows. Because the squared norm of the residual of a linear operator equation is a convex functional, the theoretical results from convex analysis for energy minimising flows are applicable. However, in the restricted situation of this paper they can often be significantly improved. Moreover, since we show that the proposed flows for minimising the norm of the residual of a linear operator equation are optimal regularisation methods and that they provide optimal convergence rates for the regularised solutions, the given rates can be considered the benchmarks for further studies in convex analysis.


2007 ◽  
Vol 14 (4) ◽  
pp. 807-808
Author(s):  
Giorgi Oniani

Abstract Corrections to [Oniani, Georgian Math. J. 13: 501–514, 2006] are listed.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Ahmed Morsy ◽  
Nashat Faried ◽  
Samy A. Harisa ◽  
Kottakkaran Sooppy Nisar

AbstractIn this work, we establish an approach to constructing compact operators between arbitrary infinite-dimensional Banach spaces without a Schauder basis. For this purpose, we use a countable number of basic sequences for the sake of verifying the result of Morrell and Retherford. We also use a nuclear operator, represented as an infinite-dimensional matrix defined over the space $\ell _{1}$ℓ1 of all absolutely summable sequences. Examples of nuclear operators over the space $\ell _{1}$ℓ1 are given and used to construct operators over general Banach spaces with specific approximation numbers.


Sign in / Sign up

Export Citation Format

Share Document