scholarly journals Group radicals and strongly compact cardinals

2013 ◽  
Vol 366 (4) ◽  
pp. 1857-1877 ◽  
Author(s):  
Joan Bagaria ◽  
Menachem Magidor
2021 ◽  
pp. 103013
Author(s):  
Arthur W. Apter ◽  
Stamatis Dimopoulos ◽  
Toshimichi Usuba

1999 ◽  
Vol 64 (4) ◽  
pp. 1675-1688
Author(s):  
Arthur W. Apter

AbstractWe extend earlier work (both individual and joint with Shelah) and prove three theorems about the class of measurable limits of compact cardinals, where a compact cardinal is one which is either strongly compact or supercompact. In particular, we construct two models in which every measurable limit of compact cardinals below the least supercompact limit of supercompact cardinals possesses non-trivial degrees of supercompactness. In one of these models, every measurable limit of compact cardinals is a limit of supercompact cardinals and also a limit of strongly compact cardinals having no non-trivial degree of supercompactness. We also show that it is consistent for the least supercompact cardinal κ to be a limit of strongly compact cardinals and be so that every measurable limit of compact cardinals below κ has a non-trivial degree of supercompactness. In this model, the only compact cardinals below κ with a non-trivial degree of supercompactness are the measurable limits of compact cardinals.


2018 ◽  
Vol 83 (2) ◽  
pp. 790-803 ◽  
Author(s):  
JAKOB KELLNER ◽  
ANDA RAMONA TĂNASIE ◽  
FABIO ELIO TONTI

AbstractAssuming three strongly compact cardinals, it is consistent that$${\aleph _1} < add\left( {\cal N} \right) < cov\left( {\cal N} \right) &#x003C; \mathfrakb &#x003C; \mathfrakd < non\left( {\cal N} \right) < cof\left( {\cal N} \right) < {2^{{\aleph _0}}}.$$Under the same assumption, it is consistent that$${\aleph _1} < add\left( {\cal N} \right) < cov\left( {\cal N} \right) < non\left( {\cal M} \right) < cov\left( {\cal M} \right) < non\left( {\cal N} \right) < cof\left( {\cal N} \right) < {2^{{\aleph _0}}}.$$


2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


2014 ◽  
Vol 79 (01) ◽  
pp. 193-207 ◽  
Author(s):  
LAURA FONTANELLA

Abstract An inaccessible cardinal is strongly compact if, and only if, it satisfies the strong tree property. We prove that if there is a model of ZFC with infinitely many supercompact cardinals, then there is a model of ZFC where ${\aleph _{\omega + 1}}$ has the strong tree property. Moreover, we prove that every successor of a singular limit of strongly compact cardinals has the strong tree property.


2009 ◽  
Vol 09 (01) ◽  
pp. 139-157 ◽  
Author(s):  
ITAY NEEMAN

The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove from large cardinals that the tree property at κ+ is consistent with failure of the singular cardinal hypothesis at κ.


1984 ◽  
Vol 49 (3) ◽  
pp. 808-812
Author(s):  
Yoshihiro Abe

J. Barbanel [1] characterized the class of cardinals fixed by an elementary embedding induced by a normal ultrafilter on Pκλ assuming that κ is supercompact. In this paper we shall prove the same results from the weaker hypothesis that κ is strongly compact and the ultrafilter is fine.We work in ZFC throughout. Our set-theoretic notation is quite standard. In particular, if X is a set, ∣X∣ denotes the cardinality of X and P(X) denotes the power set of X. Greek letters will denote ordinals. In particular γ, κ, η and γ will denote cardinals. If κ and λ are cardinals, then λ<κ is defined to be supγ<κγγ. Cardinal exponentiation is always associated from the top. Thus, for example, 2λ<κ means 2(λ<κ). V denotes the universe of all sets. If M is an inner model of ZFC, ∣X∣M and P(X)M denote the cardinality of X in M and the power set of X in M respectively.We review the basic facts on fine ultrafilters and the corresponding elementary embeddings. (For detail, see [2].)Definition. Assume κ and λ are cardinals with κ ≤ λ. Then, Pκλ = {X ⊂ λ∣∣X∣ < κ}.It is important to note that ∣Pκλ∣ = λ< κ.


Author(s):  
R. PARÉ ◽  
J. ROSICKÝ

AbstractWe show that any directed colimit of accessible categories and accessible full embeddings is accessible and, assuming the existence of arbitrarily large strongly compact cardinals, any directed colimit of accessible categories and accessible embeddings is accessible.


Sign in / Sign up

Export Citation Format

Share Document