strongly compact cardinals
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
pp. 103013
Author(s):  
Arthur W. Apter ◽  
Stamatis Dimopoulos ◽  
Toshimichi Usuba

2018 ◽  
Vol 83 (2) ◽  
pp. 790-803 ◽  
Author(s):  
JAKOB KELLNER ◽  
ANDA RAMONA TĂNASIE ◽  
FABIO ELIO TONTI

AbstractAssuming three strongly compact cardinals, it is consistent that$${\aleph _1} < add\left( {\cal N} \right) < cov\left( {\cal N} \right) &#x003C; \mathfrakb &#x003C; \mathfrakd < non\left( {\cal N} \right) < cof\left( {\cal N} \right) < {2^{{\aleph _0}}}.$$Under the same assumption, it is consistent that$${\aleph _1} < add\left( {\cal N} \right) < cov\left( {\cal N} \right) < non\left( {\cal M} \right) < cov\left( {\cal M} \right) < non\left( {\cal N} \right) < cof\left( {\cal N} \right) < {2^{{\aleph _0}}}.$$


2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


2014 ◽  
Vol 79 (01) ◽  
pp. 193-207 ◽  
Author(s):  
LAURA FONTANELLA

Abstract An inaccessible cardinal is strongly compact if, and only if, it satisfies the strong tree property. We prove that if there is a model of ZFC with infinitely many supercompact cardinals, then there is a model of ZFC where ${\aleph _{\omega + 1}}$ has the strong tree property. Moreover, we prove that every successor of a singular limit of strongly compact cardinals has the strong tree property.


2014 ◽  
Vol 79 (01) ◽  
pp. 266-278 ◽  
Author(s):  
JOAN BAGARIA ◽  
MENACHEM MAGIDOR

Abstract An uncountable cardinal κ is called ${\omega _1}$ -strongly compact if every κ-complete ultrafilter on any set I can be extended to an ${\omega _1}$ -complete ultrafilter on I. We show that the first ${\omega _1}$ -strongly compact cardinal, ${\kappa _0}$ , cannot be a successor cardinal, and that its cofinality is at least the first measurable cardinal. We prove that the Singular Cardinal Hypothesis holds above ${\kappa _0}$ . We show that the product of Lindelöf spaces is κ-Lindelöf if and only if $\kappa \ge {\kappa _0}$ . Finally, we characterize ${\kappa _0}$ in terms of second order reflection for relational structures and we give some applications. For instance, we show that every first-countable nonmetrizable space has a nonmetrizable subspace of size less than ${\kappa _0}$ .


2013 ◽  
Vol 366 (4) ◽  
pp. 1857-1877 ◽  
Author(s):  
Joan Bagaria ◽  
Menachem Magidor

Author(s):  
R. PARÉ ◽  
J. ROSICKÝ

AbstractWe show that any directed colimit of accessible categories and accessible full embeddings is accessible and, assuming the existence of arbitrarily large strongly compact cardinals, any directed colimit of accessible categories and accessible embeddings is accessible.


2012 ◽  
Vol 77 (4) ◽  
pp. 1281-1290 ◽  
Author(s):  
Bernhard König ◽  
Yasuo Yoshinobu

AbstractWe show that strongly compact cardinals and MM are sensitive to λ-closed forcings for arbitrarily large λ. This is done by adding ‘regressive’ λ-Kurepa trees in either case. We argue that the destruction of regressive Kurepa trees requires a non-standard application of MM. As a corollary, we find a consistent example of an ω2-closed poset that is not forcing equivalent to any ω2-directed-closed poset.


Sign in / Sign up

Export Citation Format

Share Document