On topological properties of Fatou sets and Julia sets of transcendental entire functions

2017 ◽  
Vol 30 (2) ◽  
pp. 235-273
Author(s):  
Masashi Kisaka
2011 ◽  
Vol 33 (1) ◽  
pp. 284-302 ◽  
Author(s):  
JÖRN PETER

AbstractWe show that the escaping sets and the Julia sets of bounded-type transcendental entire functions of order ρ become ‘smaller’ as ρ→∞. More precisely, their Hausdorff measures are infinite with respect to the gauge function hγ(t)=t2g(1/t)γ, where g is the inverse of a linearizer of some exponential map and γ≥(log ρ(f)+K1)/c, but for ρ large enough, there exists a function fρ of bounded type with order ρ such that the Hausdorff measures of the escaping set and the Julia set of fρ with respect to hγ′ are zero whenever γ′ ≤(log ρ−K2)/c.


1997 ◽  
Vol 122 (2) ◽  
pp. 223-244 ◽  
Author(s):  
GWYNETH M. STALLARD

It is known that, for a transcendental entire function f, the Hausdorff dimension of the Julia set of f satisfies 1[les ]dim J(f)[les ]2. In this paper we introduce a family of transcendental entire functions fp, K for which the set {dim J(fp, K)[ratio ]0<p, K<∞} has infemum 1 and supremum 2.


1991 ◽  
Vol 11 (4) ◽  
pp. 769-777 ◽  
Author(s):  
Gwyneth M. Stallard

AbstractWe construct a set of transcendental entire functions such that the Hausdorff dimensions of the Julia sets of these functions have greatest lower bound equal to one.


2012 ◽  
Vol 33 (4) ◽  
pp. 1146-1161 ◽  
Author(s):  
J. W. OSBORNE

AbstractWe show that if the Julia set of a transcendental entire function is locally connected, then it takes the form of a spider’s web in the sense defined by Rippon and Stallard. In the opposite direction, we prove that a spider’s web Julia set is always locally connected at a dense subset of buried points. We also show that the set of buried points (the residual Julia set) can be a spider’s web.


2021 ◽  
Vol 25 (10) ◽  
pp. 200-252
Author(s):  
Jack Burkart

We construct transcendental entire functions whose Julia sets have packing dimension in ( 1 , 2 ) (1,2) . These are the first examples where the computed packing dimension is not 1 1 or 2 2 . Our analysis will allow us further show that the set of packing dimensions attained is dense in the interval ( 1 , 2 ) (1,2) , and that the Hausdorff dimension of the Julia sets can be made arbitrarily close to the corresponding packing dimension.


2016 ◽  
Vol 94 (1) ◽  
pp. 15-19 ◽  
Author(s):  
DIEGO MARQUES ◽  
JOSIMAR RAMIREZ

In this paper, we shall prove that any subset of $\overline{\mathbb{Q}}$, which is closed under complex conjugation, is the exceptional set of uncountably many transcendental entire functions with rational coefficients. This solves an old question proposed by Mahler [Lectures on Transcendental Numbers, Lecture Notes in Mathematics, 546 (Springer, Berlin, 1976)].


Sign in / Sign up

Export Citation Format

Share Document